大学入試問題#292 山梨大学医学部後期(2010) #定積分 - 質問解決D.B.(データベース)

大学入試問題#292 山梨大学医学部後期(2010) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ \frac{\pi}{2} }}x^3\sin(x^2)dx$

出典:2010年山梨大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ \frac{\pi}{2} }}x^3\sin(x^2)dx$

出典:2010年山梨大学医学部 入試問題
投稿日:2022.08.26

<関連動画>

大阪市立大 奇数の平方の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る 

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 

中学生にはきついよ 因数分解 東京農大一

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京農工大学
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$4a^4b^4-29a^2b^2+25$
この動画を見る 

大学入試問題#112 琉球大学(1989) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$-1 \neq \alpha$:定数
$\displaystyle \int \displaystyle \frac{(log\ x)^\alpha}{x}\ log(\log\ x)dx$を計算せよ。

出典:1989年琉球大学 入試問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第3問〜条件を満たす2次式に関する証明と反例の作成

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$p$,$q$は互いに素である自然数とする。実数$a$,$b$,$c$に対して、$x$の2次多項式 $f(x)=ax^{ 2 }+bx+c$を考える。 ただし、$a \neq 0$とする。$f(x)$が条件「ある整数$k$について$f(k-1)$, $f(k)$, $f(k + 1)$ は整数となり、$f(x)$は $px-q$で割り切れる」をみたすとき、次の問いに答えよ。
(1) $\frac{2a}{p}$,$\frac{2c}{q}$は整数であることを示せ。
(2) 命題「$f(x)$が上の条件をみたすならば、$\frac{a}{p}$,$\frac{c}{q}$は整数である」は正しいか。正しければそれを示せ。正しくなければ、反例を1つあげよ。
この動画を見る 
PAGE TOP