問題文全文(内容文):
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。
問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
① zの絶対値を求めなさい。
② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。
問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
① zの絶対値を求めなさい。
② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
チャプター:
0:00 問題3の解説
2:47 問題4の解説
単元:
#数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#複素数平面#平面上のベクトルと内積#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。
問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
① zの絶対値を求めなさい。
② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。
問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
① zの絶対値を求めなさい。
② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
投稿日:2023.12.07