福田のおもしろ数学171〜ガウス記号の付いた方程式の解 - 質問解決D.B.(データベース)

福田のおもしろ数学171〜ガウス記号の付いた方程式の解

問題文全文(内容文):
$\displaystyle\left[\frac{3}{x}\right]$-$\displaystyle\left[\frac{1}{x}\right]$=3 を満たす$x$を求めなさい。
単元: #数Ⅱ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\left[\frac{3}{x}\right]$-$\displaystyle\left[\frac{1}{x}\right]$=3 を満たす$x$を求めなさい。
投稿日:2024.06.21

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

2021久留米大(医)三次方程式と複素平面

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.

2021久留米(医)
この動画を見る 

大学入試問題#13 自治医科大学(2021) 対数と整数問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。

出典:2021年自治医科大学 入試問題
この動画を見る 

福田の数学〜中央大学2023年理工学部第2問〜三角関数の近似値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$のとき、関数$\displaystyle\frac{\sin x}{x}$は$\boxed{\ \ サ\ \ }$する。このことより、
$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$では$\boxed{\ \ シ\ \ }$≦$\displaystyle\frac{\sin x}{x}$≦$\boxed{\ \ シ\ \ }$+0.05 が成り立つ。
$\boxed{\ \ サ\ \ }$の解答群
ⓐ 区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加 ⓑ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓒ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{8}$で増加し、区間$\displaystyle\frac{\pi}{8}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓓ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{8}$で減少し、区間$\displaystyle\frac{\pi}{8}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加
ⓔ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{2}$で増加し、区間$\displaystyle\frac{\pi}{2}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓕ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{2}$で減少し、区間$\displaystyle\frac{\pi}{2}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加

$\boxed{\ \ シ\ \ }$の解答群
ⓐ0.8 ⓑ0.85 ⓒ0.9 ⓓ0.95 ⓔ1 ⓕ1.05 ⓖ1.1 ⓗ1.15

(2)底面が正五角形PQRSTで、側面が正三角形である正五角錐をKとする。ただし、Kの各辺の長さを1とする。底面にはないKの頂点をAとし、線分PQの中点をMとする。また線分PSの長さは$\boxed{\ \ ス\ \ }$である。これより、$\cos\angle SAM$の値は
$\boxed{\ \ セ\ \ }$-0.025≦$\cos\angle SAM$<$\boxed{\ \ セ\ \ }$+0.025
を満たす。さらに、(1)の$\displaystyle\frac{\sin x}{x}$についての結果より、$\angle SAM$の大きさは
$\boxed{\ \ ソ\ \ }$-1.5°≦$\cos\angle SAM$<$\boxed{\ \ ソ\ \ }$+1.5°
を満たす。
なお、必要ならば$\sqrt 2$=1.41..., $\sqrt 3$=1.73..., $\sqrt 5$=2.23... を用いてよい。

$\boxed{\ \ ス\ \ }$の解答群
ⓐ$\sqrt 2$ ⓑ$\sqrt 3$ ⓒ$\sqrt 5$ ⓓ$\displaystyle\frac{1+\sqrt 2}{2}$ 
ⓔ$\displaystyle\frac{1+\sqrt 3}{2}$ ⓕ$\displaystyle\frac{1+\sqrt 5}{2}$ ⓖ$\displaystyle\frac{\sqrt 2+\sqrt 3}{2}$ ⓗ$\displaystyle\frac{\sqrt 2+\sqrt 5}{2}$ 
ⓘ$\displaystyle\frac{\sqrt 3+\sqrt 5}{2}$ ⓙ$\displaystyle\frac{\sqrt 2+\sqrt 3}{3}$ ⓚ$\displaystyle\frac{\sqrt 2+\sqrt 5}{3}$ ⓛ$\displaystyle\frac{\sqrt 3+\sqrt 5}{3}$
 
$\boxed{\ \ セ\ \ }$の解答群
ⓐ-0.4 ⓑ-0.35 ⓒ-0.3 ⓓ-0.25 ⓔ-0.2 ⓕ-0.15 ⓖ-0.1 

$\boxed{\ \ ソ\ \ }$の解答群
ⓐ105° ⓑ108° ⓒ111° ⓓ114° ⓔ117° ⓕ120° 
この動画を見る 

15兵庫県教員採用試験(数学:3番 微積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣ $k>0$ , $C:f(x)=x^3-3k^2x$
Cは極大値16をもつ。C上の点(1,f(1))の接線lとCで囲まれた面積Sを求めよ。
この動画を見る 
PAGE TOP