福田のわかった数学〜高校2年生056〜通過範囲(1)直線の通過範囲 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生056〜通過範囲(1)直線の通過範囲

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 通過範囲(1)\\
mが全ての実数を動くとき、直線\\
y=mx+m^2\\
の通過する領域を図示せよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 通過範囲(1)\\
mが全ての実数を動くとき、直線\\
y=mx+m^2\\
の通過する領域を図示せよ。
\end{eqnarray}
投稿日:2021.09.13

<関連動画>

微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 全統高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 x³+(1-a)x²+3x+b=0・・・(*) はx=-1を解にもつ。
(1)bをaを用いて表せ。
(2)a=1のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解をα,βとする。 f(x)=x²+cx+d (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) f(α)=1/β f(β)=1/α f(-1)=-1
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

アイキャッチ画像
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
この動画を見る 

早稲田の恒等式!この形は〇〇したくなりますよね【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a\\
⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a  \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0\\
⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2  \\
\end{eqnarray}
この動画を見る 
PAGE TOP