福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲

問題文全文(内容文):
正の実数tに対し、座標平面上の2点$P(0,t)$と$Q(\frac{1}{t},0)$を考える。
tが$1 \leqq t \leqq 2$の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。

2022大阪大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の実数tに対し、座標平面上の2点$P(0,t)$と$Q(\frac{1}{t},0)$を考える。
tが$1 \leqq t \leqq 2$の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。

2022大阪大学理系過去問
投稿日:2022.04.18

<関連動画>

福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。

(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。

(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。

2021青山学院大学理工学部過去問
この動画を見る 

九州大 数式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
この動画を見る 

コメント欄はありがたい。本当に2秒で答えが出た

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.

2019横浜市立(医)過去問
この動画を見る 

久留米(医) 5倍角 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
この動画を見る 

#広島市立大学2024#不定積分_22#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{e^{ \frac{x}{2}}} dx$

出典:2024年広島市立大学後期 不定積分問題
この動画を見る 
PAGE TOP