【よく出る!】分数型の漸化式はこれで一撃!〔数学、高校数学〕 - 質問解決D.B.(データベース)

【よく出る!】分数型の漸化式はこれで一撃!〔数学、高校数学〕

問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=\frac{2a_n}{3a_n+1}$ $a_1=1$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=\frac{2a_n}{3a_n+1}$ $a_1=1$
投稿日:2022.06.29

<関連動画>

広島県立 特殊な漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#県立広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島県立大学過去問題
各項が正の数列{$a_n$}
初項~第n項の和を$S_n$
$a_1^3+a_2^3+a_3^3+\cdots+a_n^3=2S_n^2$が成り立つ
(1)$a_n^2+2a_n=4S_n$が成り立つことを示せ。
(2)一般項$a_n$と$S_n$を求めよ。
この動画を見る 

漸化式 群馬大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0(n\geqq 2)$,$a_n-\dfrac{2S_n^2}{2S_n-1}$であるとする.
一般項$a_n$を求めよ.
$S_n=\displaystyle \sum_{k=1}^n a_k$

1979群馬大(医)過去問
この動画を見る 

京大 徳島大 整数・漸化式 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#徳島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
Pを素数、nを自然数
$(P^n)!$はPで何回割り切れるか

徳島大学過去問題
$a_1 = 2\sqrt2 , a_{n+1}=2 \sqrt{a_n}$
(1)一般項$a_n$を求めよ。
(2)初項から第n項までの積$a_1 a_2 \cdots a_n$を求めよ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(3)〜連立漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (3)$a_1$=0, $b_1$=6とし、
$a_{n+1}$=$\displaystyle\frac{a_n+b_n}{2}$, $b_{n+1}$=$a_n$ ($n$≧1)
で定まる$a_n$, $b_n$を用いて、平面上の点$P_n$($a_n$, $b_n$)($n$=1,2,3,...)を定める。
(i)点$P_n$は常に直線$y$=$\boxed{\ \ ウ\ \ }x$+$\boxed{\ \ エ\ \ }$上にある。
(ii)$n$を限りなく大きくするとき、点$P_n$は点$\left(\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }\right)$に限りなく近づく。
この動画を見る 

息抜き問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これの和を求めよ.
$7+77+777+・・・・・・+\overbrace{77・・・・77}^{ n桁 }$
この動画を見る 
PAGE TOP