福田の1.5倍速演習〜合格する重要問題079〜京都大学2018年度理系第3問〜円に内接する四角形の4辺の積の最大 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題079〜京都大学2018年度理系第3問〜円に内接する四角形の4辺の積の最大

問題文全文(内容文):
$\Large\boxed{3}$ αは0<α≦$\frac{\pi}{2}$を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)$\angle$ABC=$\angle$DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。

2018京都大学理系過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ αは0<α≦$\frac{\pi}{2}$を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)$\angle$ABC=$\angle$DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。

2018京都大学理系過去問
投稿日:2023.02.13

<関連動画>

大学入試問題#41 東海大学医学部(2021) 因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$(a+b+c)^3-a^3-b^3-c^3$を因数分解せよ。

出典:2021年東海大学医学部 入試問題
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(2)〜関数の集合と条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
この動画を見る 

【数A】【数と式】二重根号を外した形を求めよ(1) √(5+√24) (2) √(11+4√6)(3) √(12-8√2)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
二重根号を外した形を求めよ
(1) $\sqrt{5+\sqrt{24}} $
(2) $\sqrt{11+4\sqrt{6}} $
(3) $\sqrt{12-8\sqrt{2}} $
この動画を見る 

福田のおもしろ数学428〜√n+1-√n-1が有理数になるような整数nが存在するかどうかを考える

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sqrt{n+1}-\sqrt{n-1}$が有理数となる

整数$n$は存在するか?
   
この動画を見る 

福田のわかった数学〜高校2年生061〜対称式と領域(3)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 対称式と領域(3)
実数$x,\ y$が$x^2+xy+y^2=6$を
満たしながら動くとき
$x^2y+xy^2-x^2-2xy-y^2+x+y$
の取り得る値の範囲を求めよ。
この動画を見る 
PAGE TOP