福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

問題文全文(内容文):
${\Large\boxed{1}}$[1]cを正の定数とする。xの2次方程式$2x^2+(4c-3)x+2c^2-c-11=0 \ldots①$
について考える。
(1)$c=1$のとき、①の左辺を因数分解すると$(\boxed{ア}\ x+\boxed{イ})(x-\boxed{ウ})$であるから、
①の解は$x=-\frac{\boxed{イ}}{\boxed{ア}}, \boxed{ウ}$である。

(2)$c=2$のとき、①の解は$x=\frac{-\ \boxed{エ}±\sqrt{\boxed{オカ}}}{\boxed{キ}}$ であり、大きい方の解を$\alpha$とすると
$\frac{5}{\alpha}=\frac{\boxed{ク}+\sqrt{\boxed{ケコ}}}{\boxed{サ}}$である。また、$m \lt \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{シ}$である。

(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。

①の解が異なる2つの有理数であるような正の整数cの個数は$\boxed{ス}$個である。

2021共通テスト数学過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1]cを正の定数とする。xの2次方程式$2x^2+(4c-3)x+2c^2-c-11=0 \ldots①$
について考える。
(1)$c=1$のとき、①の左辺を因数分解すると$(\boxed{ア}\ x+\boxed{イ})(x-\boxed{ウ})$であるから、
①の解は$x=-\frac{\boxed{イ}}{\boxed{ア}}, \boxed{ウ}$である。

(2)$c=2$のとき、①の解は$x=\frac{-\ \boxed{エ}±\sqrt{\boxed{オカ}}}{\boxed{キ}}$ であり、大きい方の解を$\alpha$とすると
$\frac{5}{\alpha}=\frac{\boxed{ク}+\sqrt{\boxed{ケコ}}}{\boxed{サ}}$である。また、$m \lt \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{シ}$である。

(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。

①の解が異なる2つの有理数であるような正の整数cの個数は$\boxed{ス}$個である。

2021共通テスト数学過去問
投稿日:2022.01.06

<関連動画>

【数Ⅰ】数と式:√の外し方のルールを分かりやすく教えます!!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{a^2}$の$\sqrt{}$を外したa??2乗だったらただ√が取れると思っていませんか??この動画を見れば、文字があっても正しく√を外せるようになりますよ!!
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
この動画を見る 

ルートを外せ!!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ルートを外せ
$\sqrt {3^2} = $
$\sqrt {\pi ^2} = $
$\sqrt {(\pi -3)^2} = $
$\sqrt {(3 - \pi )^2} = $
この動画を見る 

気づいた?

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)#数学
指導講師: 数学を数楽に
この動画を見る 

福田のわかった数学〜高校1年生024〜共通解の考え方

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 共通解の考え方

$\left\{\begin{array}{1}
x^2+2x+a=0\\
x^2+ax+2=0\\
\end{array}\right.$

が実数の共通解をもつように
定数$a$の値を求めよ。
この動画を見る 
PAGE TOP