福田の一夜漬け数学〜図形と方程式〜円の方程式(10)2円の位置関係、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜円の方程式(10)2円の位置関係、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay$$+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay$$+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
投稿日:2018.08.07

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。

2018東北大学理系過去問
この動画を見る 

原点を中心とする円周上には無数に有理点がある。ピタゴラス数と関係が?

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#図形と方程式#微分法と積分法#円と方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
原点を中心とする円周上には無数に有理点がある。ピタゴラス数と関係があるのか解説していきます.
この動画を見る 

【数Ⅱ】円の接線【流れを覚えて自分で導出する】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+y^2=25上の点(3,4)における接線lの方程式を求めよ.$
この動画を見る 

福田のおもしろ数学503〜複雑な三角方程式が実数解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\cos^2\pi(a-x)-2\cos \pi(a-x)$

$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$

が実数解をもつような

自然数$a$の最小値を求めよ。
    
この動画を見る 
PAGE TOP