大学入試問題#53 横浜市立大学(2020) 数列 - 質問解決D.B.(データベース)

大学入試問題#53 横浜市立大学(2020) 数列

問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ

出典:2020年横浜市立大学 入試問題
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ

出典:2020年横浜市立大学 入試問題
投稿日:2021.12.04

<関連動画>

福田のおもしろ数学095〜素数が並ぶ数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列は全ての項が素数であるかどうか調べよ。
17, 19, 23, 29, 37, 47, 59, 73, 89, ...
この動画を見る 

階乗に関する方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$
x=?
この動画を見る 

14和歌山県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=5,a_{n+1}=\dfrac{5a_n+6}{a_4+4}$とする.

(1)$b_n=\dfrac{a_n+\beta}{a_n+\alpha}\ (\alpha \gt \beta)$
$b_n$が等比数列となるような$\alpha,\beta$の値を求めよ.

(2)$a_n$を求めよ.
この動画を見る 

そりゃー漸化式でも出せるよね

アイキャッチ画像
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を3つのグループに分ける場合の数を$a_{n}$通りとする
$a_{n+1}$と$a_{n}$の関係を式で表せ
$a_{n}$を求めよ$(n \geqq 3)$
この動画を見る 

福田のおもしろ数学545〜最大公約数と最小公倍数の商で定まる数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

自然数の列$\{a_n\}$が次の性質を満たしている。

$a_n=\dfrac{Icm(a_{n-1},a_{n-2})}{gcd(a_{n-1},a_{n-2})} \quad (n\geqq 2)$

$a_{560}=560,a_{1600}=1600$のとき

$a_{2025}$を求めて下さい。
    
この動画を見る 
PAGE TOP