福田のわかった数学〜高校1年生089〜確率(9)反復試行の確率(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生089〜確率(9)反復試行の確率(3)

問題文全文(内容文):
数学$\textrm{A}$ 確率(9) 反復試行(3)
点Pをxy平面上の原点におき、次の規則で動かす。
さいころを1回振るごとに
1,2,3の目が出たらx軸方向へ1平行移動
4,5の目が出たらy軸方向へ1平行移動
6の目が出たらx軸方向へ1、y軸方向へ1平行移動
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(9) 反復試行(3)
点Pをxy平面上の原点におき、次の規則で動かす。
さいころを1回振るごとに
1,2,3の目が出たらx軸方向へ1平行移動
4,5の目が出たらy軸方向へ1平行移動
6の目が出たらx軸方向へ1、y軸方向へ1平行移動
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
投稿日:2021.12.20

<関連動画>

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

【数A】くじの公平性の証明

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
くじは何回目(何番目)に引いても当たる確率が同じであることの証明です。ある生徒の疑問を鈴木先生が夜な夜な考えてみました。
この動画を見る 

京都大 確率 確率でも検算できるぞ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]

2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?

出典:2012年京都大学 過去問
この動画を見る 

福田の数学〜名古屋大学2024年文系第3問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。表と裏が出る確率がそれぞれ$\displaystyle\frac{1}{2}$のコインを$n$回投げ、以下のように得点を決める。
・最初に数直線上の原点に石を置き、コインを投げて表なら2、裏なら3だけ数直線上を正方向に石を移動させる。コインを$k$回投げた後の石の位置を$a_k$とする。
・$a_n$≠2$n$+2 の場合は得点を0、$a_n$≠2$n$+2 の場合は得点を$a_1$+$a_2$+...+$a_n$とする。
たとえば、$n$=3のとき、投げたコインが3回とも表のときは得点は0、投げたコインが順に裏、裏、表のときは得点は3+6+8=17 である。
(1)$n$解のうち裏の出る回数を$r$とするとき、$a_n$を求めよ。
(2)$n$=4とする。得点が0でない確率および25である確率をそれぞれ求めよ。
(3)$n$=9とする。得点が100である確率および奇数である確率をそれぞれ求めよ。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第3問〜場合の数、確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
[1]次の$\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。

正しい記述は$\boxed{\ \ ア\ \ }$と$\boxed{\ \ イ\ \ }$である。

⓪1枚のコインを投げる試行を5回繰り返すとき、少なくとも1回は表が
出る確率をpとすると、$p \gt 0.95$である。
①袋の中に赤球と白球が合わせて8個入っている。球を1個取り出し、色
を調べてから袋に戻す試行を行う。この試行を5回繰り返したところ赤球
が3回出た。したがって、1回の試行で赤球が出る確率は$\displaystyle\frac{3}{5}$である。
②箱の中に「い」と書かれたカードが1枚、「ろ」と書かれたカードが2枚、
「は」と書かれたカードが2枚の合計5枚のカードが入っている。同時に
2枚カードを取り出すとき、書かれた文字が異なる確率は$\displaystyle\frac{4}{5}$である。
③コインの面を見て「オモテ(表)または「ウラ(裏)」とだけ発言するロボット
が2体ある。ただし、どちらのロボットも出た面に対して正しく発言
する確率が0.9、正しく発言しない確率が0.1であり、これら2体は互いに
影響されるされることなく発言するものとする。いま、ある人が1枚のコインを
投げる。出た面を見た2体が、ともに「オモテ」と発言した時に、実際に
表が出ている確率をpとすると、$p \leqq 0.9$である。


[2]1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回
投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に-1点を
加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

・持ち点が再び0点になった場合は、その時点で終了する。
・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で
終了する。

(1)コインを2回投げ終わって持ち点が-2点である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
また、コインを2回投げ終わって持ち点が1点である確率は
$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(2)持ち点が再び0点になることが起こるのは、コインを$\boxed{\ \ キ\ \ }$回投げ
終わったときである。コインを$\boxed{\ \ キ\ \ }$回投げ終わって持ち点が0点になる
確率は$\displaystyle\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(3)ゲームが終了した時点で持ち点が4点である確率は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(4)ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ
終わって持ち点が1点である条件付き確率は$\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。

2020センター試験過去問
この動画を見る 
PAGE TOP