大学入試問題#241 早稲田大学(2014) #指数 - 質問解決D.B.(データベース)

大学入試問題#241 早稲田大学(2014) #指数

問題文全文(内容文):
関数$f(x)=(27^x+\displaystyle \frac{1}{27^x})-5(9^x+\displaystyle \frac{1}{9^x})$
$-5(3^x+\displaystyle \frac{1}{3^x})+1$の最小値と、そのときの$x$の値を求めよ。

出典:2014年早稲田大学 入試問題
チャプター:

00:00 問題提示
00:11 本編スタート
04:58 作成した解答①の掲載
05:15 作成した解答②の掲載
05:28 作成した解答③の掲載

単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=(27^x+\displaystyle \frac{1}{27^x})-5(9^x+\displaystyle \frac{1}{9^x})$
$-5(3^x+\displaystyle \frac{1}{3^x})+1$の最小値と、そのときの$x$の値を求めよ。

出典:2014年早稲田大学 入試問題
投稿日:2022.06.30

<関連動画>

島根大(医)指数方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ

(1)
$a,b$が満たす条件

(2)
$b$の値の範囲は?

出典:1996年島根大学医学部 過去問
この動画を見る 

変な指数方程式

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.xは正の実数である.
$x^{x^6}=27$
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2^{2022} + 2^{2020}}{10} = 2^▢$
▢=?
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$10^x$=25, $100^y$=400 のとき、$3x$+$6y$-2=$\boxed{エ}$ である。
この動画を見る 
PAGE TOP