【数Ⅱ】【式と証明】等式の証明6 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】等式の証明6 ※問題文は概要欄

問題文全文(内容文):
(1) $x+y+z=-1 ,xy+yz+zx+xyz=0$ ならば、$x ,y ,z$ のうち少なくとも1つは$-1$であることを示せ。
(2) $(bc+ca+ab)(a+b+c)=abc$ならば、$a ,b ,c$ のうちどれか2つの和は$0$であることを示せ。
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
2:27 (2)解説

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $x+y+z=-1 ,xy+yz+zx+xyz=0$ ならば、$x ,y ,z$ のうち少なくとも1つは$-1$であることを示せ。
(2) $(bc+ca+ab)(a+b+c)=abc$ならば、$a ,b ,c$ のうちどれか2つの和は$0$であることを示せ。
投稿日:2025.03.02

<関連動画>

福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$f(x)=(x+2)(x-1)^{10}$とし、この式を展開して
$f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}$
と表す。ただし、$a_0,a_1,...,a_{11}$は定数である。
$(\textrm{a})$多項式$f(x)$を$x-2$で割った時の余りは$\boxed{ア}$である。
$(\textrm{b})a_{10}=-\ \boxed{イ}$である。
$(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{ウエオ}$である。
$(\textrm{d})\ \ \ \ f(i)=\boxed{カキ}-\boxed{クケ}\ i \ $である。ただし、$i$は虚数単位である。

2022明治大学理工学部過去問
この動画を見る 

【超難問】2×2の計算

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$2 \times 2$の計算
この動画を見る 

早稲田の恒等式!この形は〇〇したくなりますよね【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の整数$m$,定数関数でない整式$P(x)$である.

$\displaystyle\int_{0}^{x} {P(t)}^m dt=P(x^3)-P(0)$

$P(x)$を求めよ.

早稲田大過去問
この動画を見る 

ε-N論法 #1 lim1/n=0

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n}=0$を
$ε-N$論法を利用して示せ.
この動画を見る 

√5が無理数であるユニークな証明 黄金比

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 5 }$が無理数であることを証明せよ
この動画を見る 
PAGE TOP