福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}
投稿日:2022.09.25

<関連動画>

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜複数の絶対値に対応できるか〜東京大学2018年文系第1問(1)〜絶対値を含む関数の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$ で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
(1) 放物線 C 上を動く点 A と直線l, m の距離をそれぞれL,M とする。$\sqrt{ \mathstrut L } + \sqrt{ \mathstrut M }$が最小値をとるときの点 A の座標を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 関数f(x)をf(x)=(x+1)(|x-1|-1)+2で定める。\\
(1)y=f(x)のグラフをかきなさい。\\
(2)kを実数とする。このとき、方程式f(x)=kが異なる3つの実数解\\
をもつようなkの値の範囲は\boxed{\ \ ア\ \ }である。\\
(3)曲線y=f(x)上の点P(0,f(0))における接線lの方程式はy=\boxed{\ \ イ\ \ }である。\\
また、曲線y=f(x)と直線lは2つの共有点をもつが、点Pとは異なる共有点を\\
Qとするとき、点Qのx座標は\boxed{\ \ ウ\ \ }である。さらに、曲線y=f(x)と直線lで\\
囲まれた図形の面積は\boxed{\ \ エ\ \ }である。\\
(4)関数F(x)をF(x)=\int_0^xf(t)dtで定める。このとき、F'(x)=0を満たすxを\\
すべて求めるとx=\boxed{\ \ オ\ \ }である。これより、関数F(x)は\\
x=\boxed{\ \ カ\ \ }で最小値\ \boxed{\ \ キ\ \ }\ をとることがわかる。\\
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生082〜三角関数(21)18°系の三角比(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP