【数学Ⅲ】平均値の定理・接線法線問題 すぐ理解できて一生忘れない攻略法! - 質問解決D.B.(データベース)

【数学Ⅲ】平均値の定理・接線法線問題 すぐ理解できて一生忘れない攻略法!

問題文全文(内容文):
【数学Ⅲ】平均値の定理・接線法線問題解説動画です
-----------------
$y=\displaystyle \frac{3x}{x+2}$

(1)曲線状の点A(1,1)を通る接線の方程式は?

(2)(0,-1)から$y-log x$に引いた接線の方程式は?

(3)$y=3\sqrt{ x^2 }$の(1,1)上の法線の方程式は?

(4)$f(x)=2x^2-x$において$[0,1]$について、平均値の定理の式を満たすCの値は?
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】平均値の定理・接線法線問題解説動画です
-----------------
$y=\displaystyle \frac{3x}{x+2}$

(1)曲線状の点A(1,1)を通る接線の方程式は?

(2)(0,-1)から$y-log x$に引いた接線の方程式は?

(3)$y=3\sqrt{ x^2 }$の(1,1)上の法線の方程式は?

(4)$f(x)=2x^2-x$において$[0,1]$について、平均値の定理の式を満たすCの値は?
投稿日:2020.06.09

<関連動画>

微分方程式⑤-1【1階線形微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=- \frac{x}{t}=t+1$
(2)$\frac{dx}{dt}+x=e^{-t}$
(3)$\frac{dx}{dt}+xcost = 2te^{-sint}$
1階線形微分方程式
$\frac{dx}{dt}+P(t)x=Q(t)$
この動画を見る 

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ Oを原点とする座標平面上の曲線$y=\log x$を$C$とする。正の実数$t$に対し、
曲線C上の点$P(t,\log t)$におけるCの法線Lの傾きは$\boxed{\ \ か\ \ }$である。Lに平行な
単位ベクトル$\overrightarrow{ n }$で、その$x$成分が正であるものは$\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })$である。
さらに、$r$を正の定数とし、点Qを$\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }$により定めると、
Qの座標は$(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })$となる。ここで点Qのx座標とy座標をtの関数と見て、
それぞれ$X(t),\ Y(t)$とおくと$X(t),\ Y(t)$の導関数を成分とするベクトル$(X'(t),\ Y'(t))$
はrによらないベクトル$(1,\ \boxed{\ \ さ\ \ })$と平行であるか、零ベクトルである。
定数$r$の取り方によって関数$X(t)$の増減の様子は変わる。$X(t)$が区間$t \gt 0$で
常に増加するようなrの値の範囲は$\boxed{\ \ し\ \ }$である。また、$r=2\sqrt2$のとき、$X(t)$は
区間$\boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }$で減少し、区間$0 \lt t \leqq \boxed{\ \ す\ \ }$と区間$t \geqq \boxed{\ \ せ\ \ }$で増加する。

2021明治大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系065〜微分(10)定義に従った微分(2)log xの微分

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=\log x$を微分せよ.
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$f(x)=(\log x)^2+2\log x+3$として、座標平面上の曲線$y=f(x)$を$C$とする。
ただし、$\log x$は$x$の自然対数を表し、$e$を自然対数の底とする。
$(\textrm{a})$関数$f(x)$は$x=\frac{\boxed{ソ}}{e}$のとき最小値$\boxed{タ}$をとる。
$(\textrm{b})$曲線Cの変曲点の座標は$(\boxed{チ},\ \boxed{ツ})$である。
$(\textrm{c})$直線$y=\boxed{ツ}$と曲線Cで囲まれた図形の面積は
$\frac{\boxed{テ}}{e^2}$である。
$(\textrm{d})a$を実数とする。曲線$C$の接線で、点$(0,\ a)$を通るものがちょうど1本あるとき、
aの値は$\boxed{ト}$である。
$(\textrm{e})b$を実数とする。曲線Cの2本の接線が点$(0,\ b)$で垂直に交わるとき、
bの値は$\frac{\boxed{ナ}}{\boxed{ニ}}$である。

2022明治大学理工学部過去問
この動画を見る 

微分方程式⑧-2【非同次2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
この動画を見る 
PAGE TOP