12大阪府教員採用試験(数学:2番 微分積分) - 質問解決D.B.(データベース)

12大阪府教員採用試験(数学:2番 微分積分)

問題文全文(内容文):
2⃣
(1)$x \geqq 1$, $e^x >x^2$を示せ
(2)$\displaystyle \lim_{ x \to \infty } \int_1^x t e^{-t} dt$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣
(1)$x \geqq 1$, $e^x >x^2$を示せ
(2)$\displaystyle \lim_{ x \to \infty } \int_1^x t e^{-t} dt$
投稿日:2020.09.02

<関連動画>

福田のおもしろ数学246〜分数式の極限と区分求積

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{(1+2+…+n)^5}{(1^4+2^4+…+n^4)^2}$
を求めて下さい。
この動画を見る 

【高校数学】毎日積分18日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}\frac{dx}{cos^3x}$
これを解け.
この動画を見る 

大学入試問題#513「このチャンネルでは初めての発想!!」 By Nissydarts さん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{dx}{1-6\sin^2x+12\sin^4x-8\sin^6x}$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

大学入試問題#328 金沢大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{\frac{1}{a}}e^{\sqrt{ ax }}dx$

出典:2013年金沢大学 入試問題
この動画を見る 
PAGE TOP