【実はカンタン!】媒介変数表示を3分で解説!〔数学、高校数学〕 - 質問解決D.B.(データベース)

【実はカンタン!】媒介変数表示を3分で解説!〔数学、高校数学〕

問題文全文(内容文):
$t$を実数とするとき、
  $x=2t+1$
  $y=4t^2+2t+1$
で表される点$(x,y)$の描く軌跡を求めよ。
単元: #数Ⅱ#平面上の曲線#図形と方程式#媒介変数表示と極座標#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
$t$を実数とするとき、
  $x=2t+1$
  $y=4t^2+2t+1$
で表される点$(x,y)$の描く軌跡を求めよ。
投稿日:2022.08.17

<関連動画>

高専数学 微積I #226(3) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{2}$
曲線$x=\cos t,\cos 2t+1$
$x$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

高専数学 微積I #242(1) 媒介変数表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
曲線$x=t^3,y=3t^2(0\leqq t\leqq 1)$の
長さ$\ell$を求めよ.
この動画を見る 

【数C】【平面上の曲線】次の極方程式の表す円の中心の極座標と半径を求めよ(1) r=4cos(θ-π/4)(2) r=cosθ+√3sinθ

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式の表す円の中心の極座標と半径を求めよ。

(1)$r = 4 \cos\left(\theta - \frac{\pi}{4} \right)$

(2)$r = \cos \theta + \sqrt{3} \sin \theta$
この動画を見る 

高専数学 微積I #243(1) 媒介変数曲線(x軸回転体)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$-1\leqq t\leqq 1$である.
曲線$x=t^3,y=t^2-1$と$x$軸で囲まれた
図形を$x$軸中心に回転した体積$V$を求めよ.
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標$(r,\ θ)$が、時刻$t \geqq 0$の関数として、
$r=1+t,\ \ \ θ=\log(1+t)$
で与えられるとする。時刻$t=0$にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1)$\ t \gt 0$において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2022上智大学理系過去問
この動画を見る 
PAGE TOP