【実はカンタン!】媒介変数表示を3分で解説!〔数学、高校数学〕 - 質問解決D.B.(データベース)

【実はカンタン!】媒介変数表示を3分で解説!〔数学、高校数学〕

問題文全文(内容文):
$t$を実数とするとき、
  $x=2t+1$
  $y=4t^2+2t+1$
で表される点$(x,y)$の描く軌跡を求めよ。
単元: #数Ⅱ#平面上の曲線#図形と方程式#媒介変数表示と極座標#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
$t$を実数とするとき、
  $x=2t+1$
  $y=4t^2+2t+1$
で表される点$(x,y)$の描く軌跡を求めよ。
投稿日:2022.08.17

<関連動画>

18岡山県教員使用試験(数学:5番 媒介変数表示のグラフ・面積)

アイキャッチ画像
単元: #平面上の曲線#その他#媒介変数表示と極座標#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ $ 0\leqq t\leqq \pi$,
$x=\cos t,y=\sin 2t+2\sin t$とする.

(1)曲線の概形
(2)曲線とx軸で囲まれた面積を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\textrm{III}$ 微分(3) 媒介変数表示
$x=a(\theta-\sin\theta), y=a(1-\cos\theta)$のとき、$\frac{dy}{dx},\frac{d^2y}{dx^2}$を$\theta$で表せ。
この動画を見る 

高専数学 微積I #226(2) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{4}$とする.
曲線$x=\tan t,y=\sin t+1$と
$x$軸,$y$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系086〜グラフを描こう(8)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(8)

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^3-3t^2\\
y=t^2-2t
\end{array}
\right.
\end{eqnarray}$
のグラフを描け。
ただし凹凸は調べなくてよい。
この動画を見る 

【数C】【平面上の曲線】次の極方程式の表す円の中心の極座標と半径を求めよ(1) r²-4rsinθ+3=0(2) r²-2√5r(cosθ-sinθ)-6=0

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式の表す円の中心の極座標と半径を求めよ。

(1) $r^2 - 4r \sin \theta + 3 = 0$

(2) $r^2 - 2\sqrt{5}r(\cos \theta - \sin \theta) - 6 = 0$
この動画を見る 
PAGE TOP