藤田医科大 記数法 - 質問解決D.B.(データベース)

藤田医科大 記数法

問題文全文(内容文):
$1,4,6$を使わない自然数を小さい順に
$2,3,5,7,8,9,20,22・・・・$と並べたとき,2023は何番目か?

藤田医科大過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,4,6$を使わない自然数を小さい順に
$2,3,5,7,8,9,20,22・・・・$と並べたとき,2023は何番目か?

藤田医科大過去問
投稿日:2023.02.14

<関連動画>

【理数個別の過去問解説】2015年度京都大学 数学 文系第3問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
この動画を見る 

大学入試問題#36 旭川医科大学(2020) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{p_n\},\{q_n\}$は
$\begin{eqnarray}
\left\{
\begin{array}{l}
p_{n+1}=\displaystyle \frac{1}{2}p_n+\displaystyle \frac{1}{4}q_n-\displaystyle \frac{1}{4} \\
q_{n+1}=\displaystyle \frac{1}{2}p_n+\displaystyle \frac{3}{4}q_n+\displaystyle \frac{1}{4}
\end{array}
\right.
\end{eqnarray}$ を満たす。
(1)
$p_n+q_n=p_1+q_1$を示せ

(2)
一般項$p_n$を$p_1,q_1$を用いて表せ

(3)
$\displaystyle \sum_{n=1}^\infty p_n=1$のとき、$p_1,q_1$の値を求めよ。

出典:2020年旭川医科大学 入試問題
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第3問〜関数の増減と変曲点と体積面積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
この動画を見る 

数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$

次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。

(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る 

大学入試問題#48 神戸大学(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^3log(x^2+1)dx$を計算せよ。

出典:2021年神戸大学 入試問題
この動画を見る 
PAGE TOP