【数Ⅲ】【微分とその応用】平均値の定理の利用4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】平均値の定理の利用4 ※問題文は概要欄

問題文全文(内容文):
平均値の定理を用いて、次の極限を求めよ。
(1) lim[x→+0](e^x-e^(tanx))/(x-tanx)
(2) lim[x→ 0](e^x-e^(sinx))/(x-sinx)
(3) lim[x→∞]x{log(x+2)-logx}
チャプター:

0:00 オープニング
0:04 問題概要
0:25 (1)解説
1:43 xとtanxの大小関係について
3:03 (2)解説
3:17 xとsinxの大小関係について
6:47 (3)解説

単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均値の定理を用いて、次の極限を求めよ。
(1) lim[x→+0](e^x-e^(tanx))/(x-tanx)
(2) lim[x→ 0](e^x-e^(sinx))/(x-sinx)
(3) lim[x→∞]x{log(x+2)-logx}
投稿日:2025.02.27

<関連動画>

あけましておめでとうございます

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の実数解を求めよ.
2x=x2

この動画を見る 

福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III 連続と微分可能(3)
f(x)={xsin1x (x0)0    (x=0)  のx=0
おける連続性、微分可能性を調べよ。
この動画を見る 

大学入試問題#417「一度は経験しときたい問題」 藤田保健衛生大学医学部2016 #微分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3π>π3を示せ
e<3<πは利用してよい

出典:2016年藤田保健衛生大学医学部 入試問題
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1(4)連続関数f(x)は区間x0で正の値をとり、区間x>0で微分可能
かつf(x)0であるとする。さらに、実数の定数aと関数f(x)
0x3t2f(t)dt(x3+3)f(x)+logf(x)=a (x0)
を満たすとする。このとき
a=    log    
である。また、曲線y=f(x) (x>0)の変曲点のx座標をpとすると
p3=        である。ただし、logxxの自然対数である。
この動画を見る 

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0においてx2+2x2の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 
PAGE TOP preload imagepreload image