【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄

問題文全文(内容文):
0x<2πのとき、次の方程式を解け。
(1) sinx+3cosx=1
(2) 2(sinxcosx)=6
(3) 3sin2xcos2x=2
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:42 (2)解説
3:06 (3)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0x<2πのとき、次の方程式を解け。
(1) sinx+3cosx=1
(2) 2(sinxcosx)=6
(3) 3sin2xcos2x=2
投稿日:2025.03.13

<関連動画>

北海道大 式の最大値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
x,y実数
x2+y2=1を満たす
3x2+2xy3y2の最大値と、そのときのx,yの値
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
(1)三角関数について、次の等式が成り立つ。
cos2θ=sin2θ+
sin3θ=sin3θ+sinθ
(2)0θ<2πのとき、関数
y=112sin3θ+38cos2θ34sinθ
θ=πで最小値をとり、
sinθ=のとき最大値
をとる。また、yの極致を与えるθの個数はである。

2022杏林大学医学部過去問
この動画を見る 

福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 以下の文章を読んで後の問いに答えよ。
三角関数cosx, sinxについては加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数f(x), g(x)が以下の条件を満たすとする。
(A)すべてのx, yについてf(x+y)=f(x)f(y)-g(x)g(y)
(B)すべてのx, yについてg(x+y)=f(x)g(y)+g(x)f(y)
(C)f(0)0
(D)f(x), g(x)はx=0で微分可能でf(0)=0, g(0)=1
条件(A), (B), (C)からf(0)=1, g(0)=0 がわかる。以上のことからf(x), g(x)はすべてのxの値で微分可能で、f(x)=g(x), g(x)=f(x)が成立することが示される。上のことから{f(x)+ig(x)}(cosxisinx)=1 であることが、実部と虚部を調べることによりわかる。ただしiは虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数f(x)=cosx, g(x)=sinxであることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', f(x), g(x)はx=0で微分可能でf(0)=a, g(0)=b
におきかえて、条件(A), (B), (C), (D)'を満たすf(x), g(x)はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)からf(0)=1, g(0)=0が上と同様にわかる。ここで
p(x)=eabxf(xb), q(x)=eabxg(xb)
とおくと、条件(A), (B), (C), (D)において、f(x)p(x)に、g(x)q(x)におきかえた条件が満たされる。すると前半の議論により、p(x), q(x)がまず求まり、このことを用いるとf(x)=    , g(x)=    が得られる。
(1)下線部①について、f(0)=1, g(0)=0であることを示せ。
(2)下線部②について、f(x)がすべてのxの値で微分可能な関数であり、
f(x)=g(x)となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
{f(x)+ig(x)}(cosxisinx)=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、f(x)p(x)に、g(x)q(x)におきかえた条件が満たされることを示せ。つまりp(x)q(x)が、
(B)すべてのx, yについて、q(x+y)=p(x)q(y)+q(x)p(y)
(D)p(x), q(x)はx=0 で微分可能でp(0)=0, q(0)=1
を満たすことを示せ。また空欄    ,     に入る関数を求めよ。

2023九州大学理系過去問
この動画を見る 

約束記号  C 慶應義塾 2021

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#三角関数#加法定理とその応用#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,d,e,fは0より大きく1より小さい実数
T(x,y)=x+y1x×y
T(a,f)=T(b,e)=T(c,d)=1のとき
(1+a)(1+b)(1+c)(1+d)(1+e)(1+f)=

2021慶應義塾高等学校
この動画を見る 
PAGE TOP preload imagepreload image