【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄

問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の方程式を解け。
(1) $sinx+\sqrt{3}cosx=-1$
(2) $2(sinx-cosx)=\sqrt{6}$
(3) $\sqrt{3}sin2x-cos2x=-\sqrt{2}$
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:42 (2)解説
3:06 (3)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の方程式を解け。
(1) $sinx+\sqrt{3}cosx=-1$
(2) $2(sinx-cosx)=\sqrt{6}$
(3) $\sqrt{3}sin2x-cos2x=-\sqrt{2}$
投稿日:2025.03.13

<関連動画>

福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(17) なす角(1)
2直線$y=3x-1, y=-2x+4$
のなす角$\theta(0 \lt \theta \lt \frac{\pi}{2})$を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-110 点の回転

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点P(3.4)を、原点○を中心として$\displaystyle \frac{2}{3}π$だけ回転させた点Qの座標を求めよう。
この動画を見る 

【高校数学】 数Ⅱ-103 三角関数を含む方程式・不等式⑤

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。

①$2\cos^2 \theta-5\cos \theta -3=0$

②$2\cos^2 \theta-\sin \theta -1=0$

③$\sqrt{ 3 } \tan^2 \theta -2\tan \theta-\sqrt{ 3 }=0$
この動画を見る 

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
(1)三角関数について、次の等式が成り立つ。
$\cos2θ=\boxed{アイ}\sin^2θ+\boxed{ウ}$
$\sin3θ=\boxed{エオ}\sin^3θ+\boxed{カ}\sinθ$
(2)$0 \leqq θ \lt 2\pi$のとき、関数
$y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ$
は$θ=\frac{\boxed{キ}}{\boxed{ク}}\pi$で最小値$\frac{\boxed{ケコサ}}{\boxed{シス}}$をとり、
$\sinθ=\frac{\boxed{セソ}}{\boxed{タ}}$のとき最大値$\frac{\boxed{チツ}}{\boxed{テト}}$
をとる。また、yの極致を与えるθの個数は$\boxed{ナ}$である。

2022杏林大学医学部過去問
この動画を見る 

【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
  sin x-$\sqrt{3}$cos x=1


(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
  y=sin x+cos x(0≦x≦2π)
この動画を見る 
PAGE TOP