福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値 - 質問解決D.B.(データベース)

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(1)三角関数について、次の等式が成り立つ。\hspace{160pt}\\
\cos2θ=\boxed{\ \ アイ\ \ }\sin^2θ+\boxed{\ \ ウ\ \ }\hspace{160pt}\\
\sin3θ=\boxed{\ \ エオ\ \ }\sin^3θ+\boxed{\ \ カ\ \ }\sinθ\hspace{140pt}\\
(2)0 \leqq θ \lt 2\piのとき、関数\hspace{219pt}\\
y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ\hspace{160pt}\\
はθ=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\piで最小値\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シス\ \ }}をとり、\sinθ=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}のとき最大値\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\\
をとる。また、yの極致を与えるθの個数は\boxed{\ \ ナ\ \ }である。\hspace{110pt}
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(1)三角関数について、次の等式が成り立つ。\hspace{160pt}\\
\cos2θ=\boxed{\ \ アイ\ \ }\sin^2θ+\boxed{\ \ ウ\ \ }\hspace{160pt}\\
\sin3θ=\boxed{\ \ エオ\ \ }\sin^3θ+\boxed{\ \ カ\ \ }\sinθ\hspace{140pt}\\
(2)0 \leqq θ \lt 2\piのとき、関数\hspace{219pt}\\
y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ\hspace{160pt}\\
はθ=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\piで最小値\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シス\ \ }}をとり、\sinθ=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}のとき最大値\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\\
をとる。また、yの極致を与えるθの個数は\boxed{\ \ ナ\ \ }である。\hspace{110pt}
\end{eqnarray}
投稿日:2022.10.31

<関連動画>

福田の一夜漬け数学〜多変数関数、1文字固定その2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
\triangle ABCにおいて次の不等式を示せ。\\
(1)\cos A+\cos B+\cos C \leqq \frac{3}{2}\\
(2)\cos A\cos B \cosC \leqq \frac{1}{8}
\end{eqnarray}
この動画を見る 

京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。

(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る 

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。
この動画を見る 

【数Ⅱ】三角関数:3倍角の公式笑っちゃう覚え方

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3倍角の公式笑っちゃう覚え方
この動画を見る 

福田のわかった数学〜高校1年生061〜三角形の形状決定問題(2)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(2)\\
次の等式が成り立つとき、\triangle ABCはどんな形の三角形か。\\
\sin A\cos A=\sin B\cos B
\end{eqnarray}
この動画を見る 
PAGE TOP