福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
投稿日:2021.11.27

<関連動画>

福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
この動画を見る 

難問です!三角関数と整数の融合問題!解けますか?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(11) 最大最小(1)\\
y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})\\
(1)右辺を\cosで合成せよ。\\
(2)yの最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生073〜三角関数(12)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(12) 最大最小(2)\hspace{40pt}\\
y=\cos2x+2a\sin x+1\\
の0 \leqq x \leqq \piにおける最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 全統高2模試 大問6_三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
θの関数。 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。
この動画を見る 
PAGE TOP