京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University - 質問解決D.B.(データベース)

京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。

(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
単元: #大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。

(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
投稿日:2018.12.24

<関連動画>

福田のわかった数学〜高校2年生第7回〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 2変数関数の最大最小\\
x,yが0 \leqq x \leqq 1,0 \leqq y \leqq 1を \ \ \ \ \ \ \\\
満たして変化するときの2変数関数\\
f(x,y)=5xy-2(x+y)+1\\
の最大値M,最小値mを求めよ。\ \ \
\end{eqnarray}
この動画を見る 

北大の良問!解けますか?【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$k$を実数の定数とし、$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1$とする。

(1)$f(k-1)$の値を求めよ。
(2)$\vert k \vert <2$のとき、不等式$f(x)≧0$を解け。
この動画を見る 

福田のわかった数学〜高校2年生第8回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 相加相乗平均の関係\\
a\gt0,b\gt0,c\gt0のとき、次の最小値を求めよ。\\
(1)(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ \ \ \ \\
(2)(a+2b+4c)\left(\frac{1}{a}+\frac{2}{b}+\frac{4}{c}\right)
\end{eqnarray}
この動画を見る 

どっちがでかい

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$1.11^{111}\ vs\ 1111$
この動画を見る 

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 相加相乗平均の関係\\
a,b,cを正の数とする。\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\
(1)\frac{a+b+c}{3} \geqq \sqrt[3]{abc}を示せ。\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\
(2)ab+bc+ca=k(定数)のとき、\ \ \ \ \ \ \ \\abcの最大値とその時のa,b,cを求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP