京都大 三次方程式有理数解 - 質問解決D.B.(データベース)

京都大 三次方程式有理数解

問題文全文(内容文):
$x^3+x-8=0$の解は無理数であることを示せ.

1966京都大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x-8=0$の解は無理数であることを示せ.

1966京都大過去問
投稿日:2020.04.03

<関連動画>

九州大 三次方程式と無理数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$

(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ

(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ

(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ

出典:2000年九州大学 過去問
この動画を見る 

日本大(医学部)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt3 i$
$\dfrac{(2+\alpha)^6}{\alpha^3}$の値を求めよ.

日本(医)過去問
この動画を見る 

東工大 三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k \gt 0$である.
$x^3-x+k=0$は絶対値が1の虚数解をもつ.3つの解を求めよ.

1972東工大過去問
この動画を見る 

基本問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-2x^3+3x^2-2x+1=0$のとき,
$\dfrac{x^{2222}}{x^{2224}+1}$の値を求めよ.
この動画を見る 

慶應義塾大 整式の剰余 杉山さん

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3で割って1余る自然数
$(x-1)(x^{3n}-1)$が$(x^3-1)(x^n-1)$で割り切れることを示せ

出典:2018年慶應義塾 過去問
この動画を見る 
PAGE TOP