【中学数学】平方根・ルートの計算演習~乗法公式1~ 2-9【中3数学】 - 質問解決D.B.(データベース)

【中学数学】平方根・ルートの計算演習~乗法公式1~ 2-9【中3数学】

問題文全文(内容文):
1⃣
$(\sqrt{5}+3)(\sqrt{5}-2)$

2⃣
$(\sqrt{2}+3)(\sqrt{2}-1)$

3⃣
$(3\sqrt{5}-3)(6+3\sqrt{5})$
チャプター:

00:00 はじまり

00:14 問題解説(1)

01:55 問題解説(2)

02:42 問題解説(3)

04:34 まとめ

04:57 問題と答えhttps://youtu.be/BXx6vQQHJIQ?si=G-TnBEba3i_H0vvA

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{5}+3)(\sqrt{5}-2)$

2⃣
$(\sqrt{2}+3)(\sqrt{2}-1)$

3⃣
$(3\sqrt{5}-3)(6+3\sqrt{5})$
投稿日:2021.07.04

<関連動画>

数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$

2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$

3.次の問いに答えよ。
$x+\displaystyle \frac{1}{x}=3$のとき、次の式の値を求めよ。
(1)$x^2+\displaystyle \frac{1}{x^2}$
(2)$x-\displaystyle \frac{1}{x}$
(3)$x-^3+\displaystyle \frac{1}{x^3}$
(4)$x^4+\displaystyle \frac{1}{x^4}$
この動画を見る 

【数Ⅰ】絶対値付きの方程式【絶対値ってなに? 場合分けってなんでするの?】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\vert 2x-1 \vert =3を解け.$
$ (2)\vert x-1 \vert =2x+4を解け.$
この動画を見る 

「三角比sin(90°–θ)など」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の値を求めよ。
$\sin7^{ \circ }-\cos83^{ \circ }-\sin97^{ \circ }-\cos173^{ \circ }$
この動画を見る 

【数Ⅰ】【数と式】平方根の式の値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$

のとき, 次の式の値を求めよ。

(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$



$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
$n$人のクラス(ただし$n \gt 1$)で英語と理科のテストを実施する。ただしどちらの科目にも同順位の者はいないとする。出席番号$i(i=1,2,\ldots,n)$の生徒について、その英語の順位$x$と理科の順位$y$の組を$(x_i,y_i)$で表す。
(1)変量$x$の平均値$\bar{ x }$と分散$s_x^2$をそれぞれ求めると$\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ }$である。
(2)変量$x,y$の共分散$s_{xy}$とする。クラスの人数$n$が奇数の2倍であるとき、$s_{xy}\neq 0$であることを示しなさい。
(3)$i=1,2,\ldots,n$に対して$d_i=x_i-y_i$とおく。変量$x,y$の相関係数を$r$とするとき、$r$は$n$と$d_1,d_2,\ldots,d_n$を用いて$r=1-\dfrac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ }$と表される。
(4)$x_i$と$y_i$の間に$y_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)$の関係があるとき$r$は最大値$\boxed{\ \ (か)\ \ }$をとり$y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)$の関係があるとき$r$は最小値$\boxed{\ \ (く)\ \ }$をとる。

2021慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP