【ゼロからわかる】二項定理の基本(高校数学Ⅱ) - 質問解決D.B.(データベース)

【ゼロからわかる】二項定理の基本(高校数学Ⅱ)

問題文全文(内容文):
次の式の展開式を求めよ。
(1)
$(x+3)^4$

(2)
$(2a-b)^5$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式を求めよ。
(1)
$(x+3)^4$

(2)
$(2a-b)^5$
投稿日:2022.03.03

<関連動画>

埼玉大 3次不等式と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1)(n+1)^3\gt n^3+(n-1)^3$を満たす最大の整数$n$を求めよ.
(2)$n=(1)$の解,$x\gt 0$のとき
$(n+1)^{x+3}\gt n^{x+3}+(n-1)^{x+3}$を証明せよ.

埼玉大過去問
この動画を見る 

福田のおもしろ数学303〜階乗のたくさんある分数の和

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2! 17!} $$\displaystyle + \frac{1}{3! 16!} $$\displaystyle + \frac{1}{4! 15!}$$+ \cdots $$\displaystyle + \frac{1}{9! 10!} $$\displaystyle = \frac{N}{1! 18!}$ を満たす $N$ を求めよ。
この動画を見る 

00京都府採用試験(数学:3番相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3⃣3つの正の数の相加平均と相乗平均の関係を記述し、それを証明せよ。
この動画を見る 

数検準1級1次過去問(1番 相加平均・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ a≠0
$\frac{2a^4-4a^2+8}{a^2}$の最小値を求めよ
この動画を見る 

ε-N論法 #4 はさみうちの原理

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
各自然数$n$で$a_n \leqq b_n \leqq c_n$を
満たす任意の数列
{$a_n$},{$b_n$},{$c_n$}に対して
$\displaystyle \lim_{n\to\infty} a_n=A=\displaystyle \lim_{n\to\infty} c_n$
ならば
$\displaystyle \lim_{n\to\infty} b_n=A$
ε-N論法で証明せよ.
この動画を見る 
PAGE TOP