問題文全文(内容文):
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$
(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ
(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ
出典:東京都立大学 過去問
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$
(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ
(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ
出典:東京都立大学 過去問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$
(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ
(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ
出典:東京都立大学 過去問
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$
(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ
(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ
出典:東京都立大学 過去問
投稿日:2019.12.10