弘前大(医、他)分数型漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

弘前大(医、他)分数型漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2010弘前大学過去問題
$a_1 = 4 \quad a_{n+1} = \frac{4a_n+3}{a_n+2}$
(1) $b_n = \frac{a_n -3}{a_n+1}$
$b_n$の漸化式を求めよ。
(2)$a_n$を求めよ。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010弘前大学過去問題
$a_1 = 4 \quad a_{n+1} = \frac{4a_n+3}{a_n+2}$
(1) $b_n = \frac{a_n -3}{a_n+1}$
$b_n$の漸化式を求めよ。
(2)$a_n$を求めよ。
投稿日:2018.04.20

<関連動画>

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る 

大分大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項$a_n$を求めよ.
$S_n=(n+3)(\dfrac{1}{3}a_n-2)$

2020大分大過去問
この動画を見る 

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

確率漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
この動画を見る 

横浜市立(医)漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016横浜市立大学過去問題
$a_1=1 , a_2 = 1$
$a_{n+2}-5a_{n+1}+6a_n-6n = 0$
この動画を見る 
PAGE TOP