場合の数 集合の個数~ベン図も使えます~【さこすけ's サイエンスがていねいに解説】 - 質問解決D.B.(データベース)

場合の数 集合の個数~ベン図も使えます~【さこすけ's サイエンスがていねいに解説】

問題文全文(内容文):
全体集合Uと,その部分集合A,Bに対して$n(U)=50,n(A∪B)=42,n(A∩B)=3,
n$($A$の補集合$∩B)=15$であるとき、次の集合の要素の個数を求めよ。
(1)$A$の補集合$∩B$の補集合        (2)$A∩B$の補集合      (3)$A$

500以上1000以下の整数のうち,次のような数は何個あるか。
(1)11の倍数でない整数  (2)11の倍数であるが3の倍数でない整数

60人の生徒に数学と英語の試験を行った。数学の合格者は50人,
英語の合格者は30人,2教科ともに不合格であった者は8人であった。
(1)2教科とも合格した者は何人か。(2)数学だけ合格した者は何人か。
チャプター:

0:00オープニング
0:05問題1解説
3:21問題2解説
6:16問題3解説
9:36エンディング

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
全体集合Uと,その部分集合A,Bに対して$n(U)=50,n(A∪B)=42,n(A∩B)=3,
n$($A$の補集合$∩B)=15$であるとき、次の集合の要素の個数を求めよ。
(1)$A$の補集合$∩B$の補集合        (2)$A∩B$の補集合      (3)$A$

500以上1000以下の整数のうち,次のような数は何個あるか。
(1)11の倍数でない整数  (2)11の倍数であるが3の倍数でない整数

60人の生徒に数学と英語の試験を行った。数学の合格者は50人,
英語の合格者は30人,2教科ともに不合格であった者は8人であった。
(1)2教科とも合格した者は何人か。(2)数学だけ合格した者は何人か。
投稿日:2023.05.03

<関連動画>

橋本環奈に年賀状届く確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
片っ端から住所書いて橋本環奈に年賀状が届く確率は?
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 

ロト7全パターン買ったらどうなるか?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
ロト7を全パターン買ったらプラスですか?マイナスですか?
この動画を見る 

部屋割り問題

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
5人をA,B,Cの3部屋に分けるのは何通り?ただし0人部屋は除外とする.
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。

2021上智大学文系過去問
この動画を見る 
PAGE TOP