【高校数学】 数Ⅱ-114 三角関数を含む方程式・不等式⑦ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-114 三角関数を含む方程式・不等式⑦

問題文全文(内容文):
$0 \leqq x \lt 2π$のとき、次の方程式を書こう。

①$2 \cos 2x+1=4\sin x$

②$\sin2x=\cos x$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq x \lt 2π$のとき、次の方程式を書こう。

①$2 \cos 2x+1=4\sin x$

②$\sin2x=\cos x$
投稿日:2015.08.30

<関連動画>

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る 

【数Ⅱ】三角関数の合成【加法定理の応用で最頻出! cosへの合成も】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
(1)$2\sin \left(x+\dfrac{\pi}{3} \right)$を加法定理を用いて展開せよ.
(2)$\sin x+\sqrt3 \cos xをr \sin(x+a)$の形を表せ.
(3)$\sin x+\sqrt3 \cos x$$(0 \leqq x \leqq \pi)$の最大値,最小値を求めよ.
(4)$\sin x-\cos x$を $r \sin(x+a)$の形で表せ.
(5)$2\sin x+3\cos x$を$r \sin(x+a)$の形で表せ.
この動画を見る 

加法定理の証明をベクトルで

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosα・cosβ+sinα・sinβ =

この動画を見る 

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 

【高校数学】 数Ⅱ-108 加法定理②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\tan(\alpha+\beta)=$____

②$\tan(\alpha-\beta)=$____

◎次の値を求めよう。

③$\tan 105°$

④$\tan 75°$
この動画を見る 
PAGE TOP