【高校数学】 数Ⅱ-94 三角関数の性質⑤ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-94 三角関数の性質⑤

問題文全文(内容文):
◎次の式を簡単にしよう。

①$\sin (\displaystyle \frac{π}{2}+\theta)+\sin (\displaystyle \frac{π}{2}-\theta)+\cos (-\theta)$

②$\cos (\displaystyle \frac{π}{2}+\theta)+\cos (\displaystyle \frac{π}{2}-\theta)+cos (-\theta)+\cos (π-\theta)$

③$\sin (\displaystyle \frac{π}{2}+\theta)\sin (\displaystyle \frac{π}{2}-\theta)-\sin (π+\theta)\sin (π-\theta)$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を簡単にしよう。

①$\sin (\displaystyle \frac{π}{2}+\theta)+\sin (\displaystyle \frac{π}{2}-\theta)+\cos (-\theta)$

②$\cos (\displaystyle \frac{π}{2}+\theta)+\cos (\displaystyle \frac{π}{2}-\theta)+cos (-\theta)+\cos (π-\theta)$

③$\sin (\displaystyle \frac{π}{2}+\theta)\sin (\displaystyle \frac{π}{2}-\theta)-\sin (π+\theta)\sin (π-\theta)$
投稿日:2015.08.03

<関連動画>

数検準1級1次過去問(2番 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$x^3-7x^2-4x+1=0$
の3つの解をα、β、γとする。
$α^2+β^2+γ^2$の値を求めよ。

解と係数の関係
$ax^3+bx^2+cx+d=0$
$α+β+γ=- \frac{b}{a}$
$αβ+βγ+γα=\frac{c}{a}$
$αβγ=- \frac{d}{a}$
この動画を見る 

高専数学 微積I #258 媒介変数表示曲線の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$1 \leqq t \leqq 2$である.
曲線$x=t+\dfrac{1}{t},y=t-\dfrac{1}{t}$と
$x$軸,直線$x=\dfrac{5}{2}$で
囲まれた図形の面積$S$を求めよ.
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の不等式を解け。
(1)cos2x<sinx
(2)cos2x≧cos² x
(3)cosx+sin2x>0
この動画を見る 

【高校数学】 数Ⅱ-118 三角関数の合成①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を$rsin(\theta+\alpha)$の形に変形しよう。ただし、$r \gt 0 ,-π \lt \alpha \lt π$とする。

①$\sqrt{ 3 } \sin \theta+\cos \theta$

②$\sqrt{ 2 } \sin \theta-\sqrt{ 6 } \cos \theta$

③$3 \sin \theta+4 \cos \theta$
この動画を見る 

チャレンジ問題(複雑なパズル)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\dfrac{1}{1}=?,\ \dfrac{2\cdot 3}{1\cdot 3}=?,\ \dfrac{3\cdot 5\cdot 6}{1\cdot 3\cdot 5}=?$
$\dfrac{4 \cdot 7 \cdot 9 \cdot 10}{1 \cdot 3 \cdot 5 \cdot 7}=?,\ \dfrac{5 \cdot 9 \cdot 12 \cdot 14 \cdot 15}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 4}=?$

(1)各式の右辺を計算せよ.
(2)式の両辺がどのように続くか予想せよ.
(3)(2)の予想を示せ.
この動画を見る 
PAGE TOP