福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 自然数a,bに対し、3次関数f_{a,b}(x),g_{a,b}(x)を\hspace{150pt}\\
f_{a,b}(x)=x^3+3ax^2+3bx+8\\
g_{a,b}(x)=8x^3+3bx^2+3ax+1\\
で定める。次の問いに答えよ。\\
(1)次の条件(\textrm{I})(\textrm{II})の両方を満たす自然数の組(a,b)\\
でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{I})f_{a,b}(x)が極値をもつ\\
(\textrm{II})g_{a,b}(x)が極値をもつ\\
(2)3次方程式f_{a,b}(x)=0の3つの解が\alpha,\beta,\gammaであるとき\\
3次方程式g_{a,b}(x)=0の解を\alpha,\beta,\gammaで表せ。\\
(3)次の条件(\textrm{III})を満たす自然数の組(a,b)でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{III})3次方程式f_{a,b}(x)=0が相異なる3つの実数解をもつ。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 自然数a,bに対し、3次関数f_{a,b}(x),g_{a,b}(x)を\hspace{150pt}\\
f_{a,b}(x)=x^3+3ax^2+3bx+8\\
g_{a,b}(x)=8x^3+3bx^2+3ax+1\\
で定める。次の問いに答えよ。\\
(1)次の条件(\textrm{I})(\textrm{II})の両方を満たす自然数の組(a,b)\\
でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{I})f_{a,b}(x)が極値をもつ\\
(\textrm{II})g_{a,b}(x)が極値をもつ\\
(2)3次方程式f_{a,b}(x)=0の3つの解が\alpha,\beta,\gammaであるとき\\
3次方程式g_{a,b}(x)=0の解を\alpha,\beta,\gammaで表せ。\\
(3)次の条件(\textrm{III})を満たす自然数の組(a,b)でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{III})3次方程式f_{a,b}(x)=0が相異なる3つの実数解をもつ。
\end{eqnarray}
投稿日:2022.08.14

<関連動画>

東京農工大 3次関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a におけるf(n)の最大値を求めよ.$
この動画を見る 

久留米(医) 5倍角 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
この動画を見る 

東京医科大 3乗根の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{n+1}-\sqrt[3]{n}<\dfrac{1}{48}を満たす最小の自然数nを求めよ.$
この動画を見る 

三次方程式の解に関するナイスな問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-x^2-x+2=0の3つの解を\alpha,\beta,\deltaとしたとき,(\alpha^3+1)(\beta^3+1)(\delta^3+1)の値を求めよ.$
この動画を見る 

工夫が大事!積分と確率の融合問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,

$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $

となる確率を求めよ。
この動画を見る 
PAGE TOP