【高校数学】 数Ⅱ-124 指数の拡張② - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-124 指数の拡張②

問題文全文(内容文):
$x^{n}=a$となる数$x$を、$a$の$n$乗根といい、2乗根、3乗根…をまとめて①____という。

◎次の値を求めよう。

②$^3\sqrt{ 8 }$

③$^3\sqrt{ 81 }$

④$\sqrt{ 25 }$

⑤$^4\sqrt{ 2 }$ $^4\sqrt{ 8 }$

⑥$\displaystyle \frac{^3\sqrt{ 54 }}{^3\sqrt{ 2 }}$

⑦$\sqrt{ ^3\sqrt{ 64 } }$

⑧$^8\sqrt{ 81 }$
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x^{n}=a$となる数$x$を、$a$の$n$乗根といい、2乗根、3乗根…をまとめて①____という。

◎次の値を求めよう。

②$^3\sqrt{ 8 }$

③$^3\sqrt{ 81 }$

④$\sqrt{ 25 }$

⑤$^4\sqrt{ 2 }$ $^4\sqrt{ 8 }$

⑥$\displaystyle \frac{^3\sqrt{ 54 }}{^3\sqrt{ 2 }}$

⑦$\sqrt{ ^3\sqrt{ 64 } }$

⑧$^8\sqrt{ 81 }$
投稿日:2015.09.10

<関連動画>

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
この動画を見る 

【数Ⅱ】【指数対数】指数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a$\gt$0,b$\gt$0とする。次の式を計算せよ。
(1)(a$^{\frac{1}{2}}$+a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)(a$^{\frac{1}{2}}$-a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)
(2)(a$^{\frac{x}{3}}$-b$^{-\frac{x}{3}}$)(a$^{\frac{2x}{3}}$+a$^{\frac{x}{3}}$b$^{-\frac{x}{3}}$+b$^{-\frac{2x}{3}}$)

(1)($\sqrt[4]{6}$+$\sqrt[4]{5}$)($\sqrt[4]{6}$-$\sqrt[4]{5}$)
(2)($\sqrt[3]{4}$+$\sqrt[3]{2}$)$^3$+($\sqrt[3]{4}$-$\sqrt[3]{2}$)$^3$

(1) $\sqrt[5]{-32}$
(2) $\sqrt[3]{-\frac{1}{64}}$
(3) $\sqrt[3]{54}$$\times$2$\sqrt[3]{-2}$$\times$$\sqrt[3]{16}$
(4) $\sqrt[3]{-24}$+$\sqrt[3]{81}$)$+$$\sqrt[3]{-3}$

x$^{\frac{1}{3}}$+x$^{-\frac{1}{3}}$=3のとき、x+x$^{-1}$, x$^{3}$+x$^{-3}$の値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生090〜指数対数(3)指数法則を使う計算(3)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(3) 指数法則(3)
(1)$a^{2x}=5$のとき$\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}$を求めよ。
(2)$a^{3x}-a^{-3x}=14$のとき$a^x-a^{-x}, a^x+a^{-x}$を求めよ。
この動画を見る 

2022乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(5+2 \sqrt 6)^{1011}(\sqrt 3 - \sqrt 2)^{2022}$
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP