福田の一夜漬け数学〜2次関数・解の存在範囲(3)少なくとも1つ〜高校1年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜2次関数・解の存在範囲(3)少なくとも1つ〜高校1年生

問題文全文(内容文):
${\Large\boxed{1}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。

${\Large\boxed{2}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつような$m$の値の範囲を求めよ。

(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。

${\Large\boxed{2}} x^2+(2-m)x+4$$-2m$$=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつような$m$の値の範囲を求めよ。

(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
投稿日:2018.05.17

<関連動画>

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014九州大学過去問題
(1)aは自然数$\quad$ $a^2$を3で割った余りは0か1を証明
(2)$a^2+b^2=3c^2$を満たすと仮定するとa,b,cはすべて3で割りきれなければならないことを証明せよ。
(3)$a^2+b^2=3c^2$を満たす自然数a,b,cは存在しないことを証明
この動画を見る 

【数学】正弦定理の証明は覚えなくても、当たり前のように発想できます【発想の仕方の解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】正弦定理の証明についての説明動画です
-----------------
(1)$\triangle ABC$において、$A=75^{ \circ },C=60^{ \circ },b=6$のとき、$C$の値を求めよ。

(2)動画内の図のような$\triangle ABC$において、辺$C$の大きさを求めよ。
この動画を見る 

【数Ⅰ】データの分析:標準得点について

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅰ データの分析】
標準得点(Z得点)と呼ばれる調整された得点の計算方法と、その特徴について説明をします。
共通テストの模試や私大の入試にも良く出題されるテーマですので、この機会にぜひマスターしておきましょう!
この動画を見る 

【今見るべき公式集!】高校までに学ぶ「因数分解」の公式~全国入試問題解法

アイキャッチ画像
単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
中学校、高等学校までに学ぶ「因数分解の公式」一覧の解説
①$ma\pm mℓ=m(a \pm ℓ)$
②$x^2 \pm 2xy+y^2=(x \pm y)^2$
③$x^2-y^2=(x-y)(x+y)$
④$x^2 +(a+ℓ) x + aℓ=(x + a)(x+ℓ)$
⑤$acx^2+(ad+ℓc)x+ℓd=(ax+ℓ)(cx+d)$
⑥$x^3\pm y^3=(x+y)(x^2\mp xy+y^2)$
⑦$a^2+ℓ^2+c^2+2aℓ+2ℓc+2ca=(a+ℓ+c)^2$
⑧$a^3\pm 3a^2ℓ+3aℓ^2\pmℓ^3=(a \pmℓ)^3$
⑨$a^3+ℓ^3+c^3-3aℓc=(a+ℓ+c)(a^2+ℓ^2c^2-ℓc-ca-aℓ)$
この動画を見る 

【数Ⅰ】【図形と計量】正弦、余弦定理応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,

$\dfrac{\sin A}{13}=\dfrac{\sin B}{8}=\dfrac{\sin C}{7}$

が成り立つとき,次のものを求めよ。
(1) 最も大きい角の大きさ (2) 最も小さい角の正接

この動画を見る 
PAGE TOP