変わった不等式 - 質問解決D.B.(データベース)

変わった不等式

問題文全文(内容文):
実数解を求めよ
$log_5\sqrt{ x^2-4x+29 }+\sqrt{ x^2-4x+8 } \leqq 3$
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ
$log_5\sqrt{ x^2-4x+29 }+\sqrt{ x^2-4x+8 } \leqq 3$
投稿日:2020.01.12

<関連動画>

【高校数学】 数Ⅱ-14 恒等式③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。

①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$

②$x^2+y^2=a(x+y)^2+b(x-y)^2$
この動画を見る 

13神奈川県教員採用試験(数学:4番 整式の割り算)

アイキャッチ画像
単元: #数Ⅱ#式と証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$x^{2016}+x^7+1$を$x^2+1$で割った余りを求めよ。
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察5(受験編)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して

$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
この動画を見る 

大学入試問題#600「合同式使ってみた」 山梨大学医学部(2014) #整式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^{2014}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ

出典:2014年山梨大学 入試問題
この動画を見る 

福田のわかった数学〜高校2年生第8回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a\gt0,b\gt0,c\gt0$のとき、次の最小値を求めよ。
(1)$(a+b+c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b}+\displaystyle \frac{1}{c}\right)$
(2)$(a+2b+4c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{4}{c}\right)$
この動画を見る 
PAGE TOP