微分方程式⑦-1【2階微分方程式の一般解を求める】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式⑦-1【2階微分方程式の一般解を求める】(高専数学、数検1級)

問題文全文(内容文):
2階微分方程式の一般解である.これを解け.

(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2階微分方程式の一般解である.これを解け.

(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
投稿日:2020.12.18

<関連動画>

熊本大 関数の領域

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$

$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。

出典:2001年熊本大学 過去問
この動画を見る 

名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ

出典:2004年名古屋大学 過去問
この動画を見る 

福田のおもしろ数学391〜簡単な関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
任意の実数$x,y$に対して$f(0)=1$、

$f(xy+1)=f(x)f(y)-f(y)-x+2$

が成り立つような実数値関数$f(x)$をすべて求めて下さい。
この動画を見る 

【高校数学】数Ⅲ-103 高次導関数①

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数の第3次までの導関数を求めよ。

①$y=x^4$

②$y=\sin 2x$

③$y=xe^x$

④関数$y=\dfrac{1}{x+1}$の第$n$次導関数を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(2)〜3次関数の増減と方程式の解の個数

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$a$,$b$,$c$を実数とし、実数$x$の関数$f(x)$を$f(x)$=$x^3$+$ax^2$+$bx$+$c$ とおく。
$f(x)$は$x$=-1で極値3をとり、方程式$f(x)$=0は$x$=-2を解にもつ。
(i)$a$=$\boxed{\ \ ウ\ \ }$, $b$=$\boxed{\ \ エ\ \ }$, $c$=$\boxed{\ \ オ\ \ }$である。
(ii)Kを実数とする。方程式$f(x)$=$4x$+K が持つ異なる実数解の個数が2個となるとき、Kの値は$\boxed{\ \ カ\ \ }$である。
この動画を見る 
PAGE TOP