福田の数学〜北里大学2022年医学部第2問〜定積分と不等式 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 次の各問いに答えよ。\hspace{210pt}\\
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。\hspace{160pt}\\
(2)x≠0を満たすすべての実数xに対して、e^x \gt 1+xとe^{-x^2} \lt \frac{1}{1+x^2}が\hspace{8pt}\\
成り立つことを証明せよ。\hspace{192pt}\\
(3)\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}が成り立つことを証明せよ。\hspace{88pt}
\end{eqnarray}
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 次の各問いに答えよ。\hspace{210pt}\\
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。\hspace{160pt}\\
(2)x≠0を満たすすべての実数xに対して、e^x \gt 1+xとe^{-x^2} \lt \frac{1}{1+x^2}が\hspace{8pt}\\
成り立つことを証明せよ。\hspace{192pt}\\
(3)\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}が成り立つことを証明せよ。\hspace{88pt}
\end{eqnarray}
投稿日:2022.10.29

<関連動画>

福田のわかった数学〜高校3年生理系101〜大小比較(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(1)\\
999^{1000}と1000^{999}\\
の大小を比較せよ。
\end{eqnarray}
この動画を見る 

頻出!微分のよく見るような問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\displaystyle \frac{1}{2}(x^2+1)$上の点$P$における接線は$x$軸と交わるとし,その交点を$\varrho$とおく。線分$P\varrho$の長さを$L$とするとき,$L$が取りうる値の最小値を求めよ。
この動画を見る 

近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。

早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

アイキャッチ画像
単元: #関数と極限#微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
この動画を見る 
PAGE TOP