【解答にミスあり概要欄】大学入試問題#322 慶應義塾大学(2021) #三角関数 - 質問解決D.B.(データベース)

【解答にミスあり概要欄】大学入試問題#322 慶應義塾大学(2021) #三角関数

問題文全文(内容文):
$-\displaystyle \frac{\pi}{2} \leqq \theta \leqq \displaystyle \frac{\pi}{2}$
$4\cos\displaystyle \frac{\theta}{2}(\cos\displaystyle \frac{\theta}{2}+\sin\displaystyle \frac{\theta}{2})$のとき
$\sin\theta$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$-\displaystyle \frac{\pi}{2} \leqq \theta \leqq \displaystyle \frac{\pi}{2}$
$4\cos\displaystyle \frac{\theta}{2}(\cos\displaystyle \frac{\theta}{2}+\sin\displaystyle \frac{\theta}{2})$のとき
$\sin\theta$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
投稿日:2022.09.28

<関連動画>

数検準1級2次過去問【2020年12月】1番:三角関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#加法定理とその応用#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
(1) $θ=\frac{\pi}{10}$のとき
$sin2θ=cos3θ$を示せ
(2)$sin \frac{\pi}{10}$を求めよ。
この動画を見る 

福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。

(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。

2021立教大学理工学部過去問
この動画を見る 

【数学】4分で積和公式が馬鹿でもわかる考え方

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】4分で積和公式解説動画です
この動画を見る 

福田の数学〜東北大学2024年文系第2問〜75°の三角比と図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#方べきの定理と2つの円の関係#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a$, $b$, $d$を正の実数とし、$xy$平面上の点O(0,0), A($a$,0), B($b$,0), D(0,$d$)が次の条件をすべて満たすとする。
$\angle OAD$=15°, $\angle OBD$=75°, AB=6
以下の問いに答えよ。
(1)$\tan 75°$の値を求めよ。
(2)$a$, $b$, $d$の値をそれぞれ求めよ。
(3)2点O, Dを直径の両端とする円をCとする。線分ADとCの交点のうちDと異なるものをPとする。また、線分BDとCの交点のうちDと異なるものをQとする。このとき、方べきの定理AP・AD=$\textrm{AO}^2$, BP・BD=$\textrm{BO}^2$ を示せ。
(4)(3)の点P,Qに対し、積AP・BQの値を求めよ。
この動画を見る 

【数Ⅱ】三角関数:方程式sin(θ+40°)=sinθ(ただし0°≦θ≦90°)をみたすθを求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
この動画を見る 
PAGE TOP