【数C】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。 - 質問解決D.B.(データベース)

【数C】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。

問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説
2:34 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
投稿日:2020.10.21

<関連動画>

福田の数学〜立教大学2024年理学部第1問(5)〜空間ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$$座標空間において、点(-1,0,0)を通りベクトル\vec{ a }=(0,1,1)に平行な直線
上の点と、$$$$点(0,0,4)を通り\vec{ b }=(1,2,0)に平行な直線上の点の距離
の最小値は\boxed{ ク }である。$$
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)右図(※動画参照)のような正六面体$ABCD-EFGH$において、辺$FG$の中点を$M$とする。
このとき、三角形$CHM$の重心を$X$とすると、

$\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }$
と表せ、直線$AG$と三角形$CHM$の交点を$Y$とすると

$\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }$
と表せる。

解答群:$⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} $
$⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}$

2022明治大学全統過去問
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第1問〜正四面体に関する図形問題

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$1$ 辺の長さが $2$ の正四面体 $\mathrm{ABCD}$ において、辺 $\mathrm{AD}$ 上の点 $\mathrm{E}$、辺 $\mathrm{DC}$ 上の点 $\mathrm{F}$、辺 $\mathrm{CA}$ 上の点 $\mathrm{G}$、辺 $\mathrm{BC}$ 上の点 $\mathrm{H}$ を$\mathrm{AE}$$=\mathrm{DF}$$=\mathrm{CG}$$=2t,$ $\mathrm{BH}=t$ となるようにとる。ただし、 $0 \leqq t \leqq 1$ とする。
$(1)$ $\triangle \mathrm{EFG}$ の面積は $\sqrt{\fbox{ア}}(\fbox{イ}t^2$$+\fbox{ウ}t$$+\fbox{エ})$ である。
$(2)$ $\mathrm{B}$ から平面 $\mathrm{ACD}$ に垂線を下ろし、平面 $\mathrm{ACD}$ との交点を $\mathrm{P}$ とするとき、 $\mathrm{BP} = \frac{\fbox{オ}}{\fbox{カ}}\sqrt{\fbox{キ}}$ である。
$(3)$ $\mathrm{H}$ から平面 $\mathrm{EFG}$ に垂線を下ろし、平面 $\mathrm{EFG}$ との交点を $\mathrm{Q}$ とするとき、 $\mathrm{HQ} = \frac{\fbox{ク}}{\fbox{ケ}}\sqrt{\fbox{コ}}(t+\fbox{サ})$ である。
$(4)$ 四面体 $\mathrm{HEFG}$ の体積が最小になるのは
$t=\fbox{シ} + \frac{\fbox{ス}}{\fbox{セ}}\sqrt{\fbox{ソ}}$
この動画を見る 

【数C】【空間ベクトル】四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
この動画を見る 

福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<$k$1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPを$k$:1-$k$に内分する点をQとし、Rを$\overrightarrow{CR}$=$l\overrightarrow{CQ}$を満たす点とする。
$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおいたとき、次の問いに答えよ。
(1)$\overrightarrow{OD}$, $\overrightarrow{OE}$, $\overrightarrow{OP}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$を用いて表せ。
(2)$\overrightarrow{OR}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$, $k$, $l$を用いて表せ。
(3)Rが平面OAB上にあるとき、$l$を$k$を用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときの$k$の値を求めよ。
この動画を見る 
PAGE TOP