慶應女子高 整数問題 - 質問解決D.B.(データベース)

慶應女子高 整数問題

問題文全文(内容文):
$8616$と$5844$を同じ自然数$n$で割ったら,割り切れずその余りが同じ$n$の最大値と
最小値を求めよ.

慶応女子過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8616$と$5844$を同じ自然数$n$で割ったら,割り切れずその余りが同じ$n$の最大値と
最小値を求めよ.

慶応女子過去問
投稿日:2021.05.25

<関連動画>

整数問題が苦手な人必見!大事な考えが詰まった良問!【お茶の水女子大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$k^2+2$が素数となるような素数$k$をすべて見つけよ。また,それ以外にないことを示せ。
(2)整数$l$が5で割り切れないとき,$l^4-1$が5で割り切れることを示せ。

お茶の水女子大過去問
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$自然数
$3p^3-p^2q-pq^2+3q^3=2013$を満たす$(p,q)$すべて求めよ

出典:一橋大学 過去問
この動画を見る 

整数問題 基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る 

【高校数学】約数と倍数~倍数の判別法の理解をしよう~ 5-1【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
約数と倍数 倍数の判別法解説動画です
この動画を見る 

中学生向け整数問題その2

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
この動画を見る 
PAGE TOP