確率 中央大(商) - 質問解決D.B.(データベース)

確率 中央大(商)

問題文全文(内容文):
2020中央大学過去問題
1,2,22,23,,2n1
の数字が1つずつ書かれたn枚のカードから1枚をとり出して
その数をX,それを戻してもう1枚とり出してその数をYとする
①X=2Yとなる確率
②XがYの倍数となる確率
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2020中央大学過去問題
1,2,22,23,,2n1
の数字が1つずつ書かれたn枚のカードから1枚をとり出して
その数をX,それを戻してもう1枚とり出してその数をYとする
①X=2Yとなる確率
②XがYの倍数となる確率
投稿日:2023.06.26

<関連動画>

京都大学 サイコロ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロをn回振って(n2)出た目の(最大値)(最小値)=xとする
(1)
x=1となる確率

(2)
x=5となる確率

出典:2017年京都大学 過去問
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
2 白石と黒石を手元にたくさん用意する。表が白色、裏が黒色の硬貨1枚を用いて、机の上で以下の操作を繰り返し行う。ただし、最初の操作は机の上に石が1個もない状態から始めるものとする。
操作:効果を投げ、出た色と異なる色の石が机の上にあればその中の1個を取り除き、なければ出た色と同じ色の石を手元から机の上に1個置く。
とくに、机の上に石が1個もなければ、次の回の操作では出た色と同じ色の石を手元から机の上に1個置く。
(1)3回目の操作後に机の上に石がちょうど3個ある確率は        である。
(2)6回目の操作後に机の上に石がちょうど2個ある確率は        であり、石が1個もない確率は        である。
(3)6回目の操作後に机の上にある石が2個以下であったときに、8回目の操作後に机の上にある石も2個以下である条件付き確率は        である。
この動画を見る 

香川大(医)確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1回に1個ずつ同時に入れかえる.
n回目にAである確率を求めよ.

2021香川大(医)過去問
この動画を見る 

【高校数学】  数A-9  順列③ ・ 男女編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎男子3人と女子5人が1列に並ぶとき、次のような並び方は何通りある?

①両端が女子
②両端の少なくとも1人は男子
③男子3人が続いて並ぶ
④どの男子も隣合わない
この動画を見る 

福田の数学〜ポリアの壺は証明を覚えよう〜杏林大学2023年医学部第1問前編〜ポリアの壺

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、p2=, p3=
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、次式が成り立つ。
p2=オカキク, p3=ケコサシ
n回目の試行開始時点で袋に人っている玉の個数MnMn=n+であり、この時点で袋に入っていると期待される赤玉の個数RnRn=Mn×Pnと表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数はRn+1=Rn+(1Pn)×となる。したがって、
Pn+1=n+n+×Pn+1n+
が成り立つ。このことから、(n+3)×(n+)×(Pn)がnに依らず一定となる事が分かり、limnPn=と求められる。

2023杏林大学医過去問
この動画を見る 
PAGE TOP preload imagepreload image