大学入試問題#272 慶應義塾大学(2010) #y軸回転体 #定積分 #バームクーヘン積分 - 質問解決D.B.(データベース)

大学入試問題#272 慶應義塾大学(2010) #y軸回転体 #定積分 #バームクーヘン積分

問題文全文(内容文):
曲線$y=\displaystyle \frac{x}{\sqrt{ 1-x^2 }}$
$x$軸、$x=\displaystyle \frac{1}{2}$で囲まれた部分を$y$軸中心に回転した体積$V$を求めよ。

出典:2010年慶應義塾大学 入試問題
チャプター:

00:00 問題掲示
00:19 バームクーヘン積分公式の確認
01:01 本編スタート
05:25 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
曲線$y=\displaystyle \frac{x}{\sqrt{ 1-x^2 }}$
$x$軸、$x=\displaystyle \frac{1}{2}$で囲まれた部分を$y$軸中心に回転した体積$V$を求めよ。

出典:2010年慶應義塾大学 入試問題
投稿日:2022.08.05

<関連動画>

藤田保健衛生大(医)5乗根の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }+11}{2} }-\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }-11}{2} }$

出典:2017年藤田医科大学医学部 過去問
この動画を見る 

近畿大(理工)整式の剰余

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{10}-x+1$を$(x-1)^3$で割った余りを求めよ.

近畿大(理工)過去問
この動画を見る 

大学入試問題#816「ほぼ直感通り!」 #東京医科大学(2011)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
すべての正の数$x,y$に対して、不等式
$\displaystyle \frac{K}{x+y} \leq \displaystyle \frac{1}{x}+\displaystyle \frac{49}{y}$
が成り立つような定数$K$の最大値を求めよ。

出典:2011年東京医科大学
この動画を見る 

奈良県立医大 接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(P \neq 0)$
$f(x)=x^3+Px+P$の接線で$(1,1)$を通るものがちょうど2本ある。
$P$の値と接線の方程式を求めよ

出典:2013年奈良県立医科大学 過去問
この動画を見る 

重積分⑧-2【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D(x+y)dxdy$
$D : 0 \leqq y+2x \leqq 2 $,
$0 \leqq y-2x \leqq 2$
*図は動画内参照


この動画を見る 
PAGE TOP