福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(1)〜連立型の漸化式 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(1)〜連立型の漸化式

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)数列\left\{a_n\right\},\ \left\{b_n\right\}について次の条件が与えられている。\\
\left\{
\begin{array}{1}
a_{n+1}=7a_n-10b_n\\
b_{n+1}=2a_n-2b_n 
\end{array}
\right.   (n=1,2,3,\ldots)\\
\\
ただし、a_1=11,\ b_1=4とする。このとき、\\
\left\{
\begin{array}{1}
c_n=a_n-2b_n   \\
d_n=2a_n-5b_n  
\end{array}
\right.   (n=1,2,3,\ldots)\\
\\
とおくと、c_n=\boxed{\ \ ア\ \ }^n, d_n=\boxed{\ \ イ\ \ }^nであり、これより\left\{a_n\right\},\ \left\{b_n\right\}\\
の一般項は\\
\left\{
\begin{array}{1}
a_n=\boxed{\ \ ウ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ エ\ \ }・\boxed{\ \ イ\ \ }^n\\
b_n=\boxed{\ \ オ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ イ\ \ }^n    \\
\end{array}
\right.\\
\\
である。
\end{eqnarray}

2021明治大学全統過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)数列\left\{a_n\right\},\ \left\{b_n\right\}について次の条件が与えられている。\\
\left\{
\begin{array}{1}
a_{n+1}=7a_n-10b_n\\
b_{n+1}=2a_n-2b_n 
\end{array}
\right.   (n=1,2,3,\ldots)\\
\\
ただし、a_1=11,\ b_1=4とする。このとき、\\
\left\{
\begin{array}{1}
c_n=a_n-2b_n   \\
d_n=2a_n-5b_n  
\end{array}
\right.   (n=1,2,3,\ldots)\\
\\
とおくと、c_n=\boxed{\ \ ア\ \ }^n, d_n=\boxed{\ \ イ\ \ }^nであり、これより\left\{a_n\right\},\ \left\{b_n\right\}\\
の一般項は\\
\left\{
\begin{array}{1}
a_n=\boxed{\ \ ウ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ エ\ \ }・\boxed{\ \ イ\ \ }^n\\
b_n=\boxed{\ \ オ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ イ\ \ }^n    \\
\end{array}
\right.\\
\\
である。
\end{eqnarray}

2021明治大学全統過去問
投稿日:2021.09.15

<関連動画>

福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの\hspace{40pt}\\
を格子点と呼ぶ。|x|+|y|=2n\ を満たす格子点(x,\ y)全体の集合をD_{2n}とする。\\
(1)D_4は\ \boxed{\ \ あ\ \ }\ 個の点からなる。一般に、D_{2n}は\ \boxed{\ \ い\ \ }\ 個の点からなる。\\
(2)D_{2n}に属する点(x,\ y)で|x-2n|+|y|=2nを満たすものは全部で\ \boxed{\ \ う\ \ }\ 個ある。\\
(3)D_{2n}に属する点(x,\ y)で|x-n|+|y-n|=2nを満たすものは全部で\ \boxed{\ \ え\ \ }\ 個ある。\\
(4)D_{2n}から異なる2点(x_1,\ y_1),\ (x_2,\ y_2)を無作為に選ぶとき、\\
|x_1-x_2|+|y_1-y_2|=2n\\
が成り立つ確率は\ \boxed{\ \ お\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

無限等比級数

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
この動画を見る 

慶應義塾大(経済)漸化式 特性方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$
$a_{n+1}=2a_n^2$

(1)
一般項$a_n$1を求めよ

(2)
$a_n \lt 10^{60}$を満たす最大の$n$
$log_{10}2=0.3010$

出典:2005年慶應義塾大学経済学部 過去問
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて、$a_1=1$とする)

①$a_{n+1}=a_n+2$

②$a_{n+1}=2a_n$

③$a_{n+1}=2a_n+2$

④$a_{n+1}=a_n+2n$

⑤$a_{n+1}=2a_n+2^n$

⑥$a_{n+1}=2a_n+2n$
この動画を見る 

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 
PAGE TOP