福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(1)〜連立型の漸化式 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(1)〜連立型の漸化式

問題文全文(内容文):
${\Large\boxed{1}}$(1)数列$\left\{a_n\right\},\ \left\{b_n\right\}$について次の条件が与えられている。
$\left\{
\begin{array}{1}
a_{n+1}=7a_n-10b_n\\
b_{n+1}=2a_n-2b_n 
\end{array}
\right.   (n=1,2,3,\ldots)$
ただし、$a_1=11,\ b_1=4$とする。このとき、
$\left\{
\begin{array}{1}
c_n=a_n-2b_n   \\
d_n=2a_n-5b_n  
\end{array}
\right.   (n=1,2,3,\ldots)$
とおくと、$c_n=\boxed{\ \ ア\ \ }^n, d_n=\boxed{\ \ イ\ \ }^n$であり、これより$\left\{a_n\right\},\ \left\{b_n\right\}$
の一般項は
$\left\{
\begin{array}{1}
a_n=\boxed{\ \ ウ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ エ\ \ }・\boxed{\ \ イ\ \ }^n\\
b_n=\boxed{\ \ オ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ イ\ \ }^n    \\
\end{array}
\right.$
である。

2021明治大学全統過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)数列$\left\{a_n\right\},\ \left\{b_n\right\}$について次の条件が与えられている。
$\left\{
\begin{array}{1}
a_{n+1}=7a_n-10b_n\\
b_{n+1}=2a_n-2b_n 
\end{array}
\right.   (n=1,2,3,\ldots)$
ただし、$a_1=11,\ b_1=4$とする。このとき、
$\left\{
\begin{array}{1}
c_n=a_n-2b_n   \\
d_n=2a_n-5b_n  
\end{array}
\right.   (n=1,2,3,\ldots)$
とおくと、$c_n=\boxed{\ \ ア\ \ }^n, d_n=\boxed{\ \ イ\ \ }^n$であり、これより$\left\{a_n\right\},\ \left\{b_n\right\}$
の一般項は
$\left\{
\begin{array}{1}
a_n=\boxed{\ \ ウ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ エ\ \ }・\boxed{\ \ イ\ \ }^n\\
b_n=\boxed{\ \ オ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ イ\ \ }^n    \\
\end{array}
\right.$
である。

2021明治大学全統過去問
投稿日:2021.09.15

<関連動画>

漸化式 数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
この動画を見る 

コメント欄はありがたい 素晴らしい別解

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 
PAGE TOP