千葉大 整数問題 - 質問解決D.B.(データベース)

千葉大 整数問題

問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$

(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.

千葉大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$

(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.

千葉大過去問
投稿日:2023.04.25

<関連動画>

16愛知県教員採用試験(数学:2番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣自然数$N=2^a×3^b$の
(1)正の約数の個数が20コ
(2)正の約数の総和が1240をみたすa,bの値を求めよ。
この動画を見る 

早稲田大 整数問題 約数の総積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$10^n$の正の約数すべての積を求めよ

出典:早稲田大学 過去問
この動画を見る 

弘前大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ

出典:2010年弘前大学 過去問
この動画を見る 

2021東京海洋大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は5以上の素数である.
$P^2-1$は$24$の倍数を示せ.

2021東京海洋大過去問
この動画を見る 

福田のわかった数学〜高校1年生036〜部屋割り論法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 部屋割り論法$(1)$
$100個$の自然数がある。この中にその差が$99$で割り切れるような
$2個$の自然数が存在することを示せ。
この動画を見る 
PAGE TOP