問題文全文(内容文):
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
投稿日:2018.10.11