問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ aを実数の定数として3次関数\hspace{150pt}\\
f(x)=9x^3-9x+a\hspace{150pt}\\
を考える。\hspace{220pt}\\
(1) y=f(x)のグラフとx軸の共有点が2つ以上あるようなaの範囲は\hspace{11pt}\\\
\boxed{\ \ ネ\ \ }\sqrt{\boxed{\ \ ノ\ \ }}\leqq a \leqq \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ である。\\
(2)a= \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ のとき、方程式f(x)= 0の最も小さい解は\hspace{15pt}\\\
\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\sqrt{\boxed{\ \ ヒ\ \ }}\hspace{150pt}\\\
であり、y=f(x)のグラフとx軸の囲む図形の面積は\frac{\boxed{\ \ マ\ \ }}{\boxed{\ \ ミ\ \ }}\ である。\\
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{3}}\ aを実数の定数として3次関数\hspace{150pt}\\
f(x)=9x^3-9x+a\hspace{150pt}\\
を考える。\hspace{220pt}\\
(1) y=f(x)のグラフとx軸の共有点が2つ以上あるようなaの範囲は\hspace{11pt}\\\
\boxed{\ \ ネ\ \ }\sqrt{\boxed{\ \ ノ\ \ }}\leqq a \leqq \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ である。\\
(2)a= \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ のとき、方程式f(x)= 0の最も小さい解は\hspace{15pt}\\\
\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\sqrt{\boxed{\ \ ヒ\ \ }}\hspace{150pt}\\\
であり、y=f(x)のグラフとx軸の囲む図形の面積は\frac{\boxed{\ \ マ\ \ }}{\boxed{\ \ ミ\ \ }}\ である。\\
\end{eqnarray}
2022上智大学文系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ aを実数の定数として3次関数\hspace{150pt}\\
f(x)=9x^3-9x+a\hspace{150pt}\\
を考える。\hspace{220pt}\\
(1) y=f(x)のグラフとx軸の共有点が2つ以上あるようなaの範囲は\hspace{11pt}\\\
\boxed{\ \ ネ\ \ }\sqrt{\boxed{\ \ ノ\ \ }}\leqq a \leqq \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ である。\\
(2)a= \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ のとき、方程式f(x)= 0の最も小さい解は\hspace{15pt}\\\
\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\sqrt{\boxed{\ \ ヒ\ \ }}\hspace{150pt}\\\
であり、y=f(x)のグラフとx軸の囲む図形の面積は\frac{\boxed{\ \ マ\ \ }}{\boxed{\ \ ミ\ \ }}\ である。\\
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{3}}\ aを実数の定数として3次関数\hspace{150pt}\\
f(x)=9x^3-9x+a\hspace{150pt}\\
を考える。\hspace{220pt}\\
(1) y=f(x)のグラフとx軸の共有点が2つ以上あるようなaの範囲は\hspace{11pt}\\\
\boxed{\ \ ネ\ \ }\sqrt{\boxed{\ \ ノ\ \ }}\leqq a \leqq \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ である。\\
(2)a= \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ のとき、方程式f(x)= 0の最も小さい解は\hspace{15pt}\\\
\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\sqrt{\boxed{\ \ ヒ\ \ }}\hspace{150pt}\\\
であり、y=f(x)のグラフとx軸の囲む図形の面積は\frac{\boxed{\ \ マ\ \ }}{\boxed{\ \ ミ\ \ }}\ である。\\
\end{eqnarray}
2022上智大学文系過去問
投稿日:2022.10.05