問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\hspace{220pt}\\
(1)eを自然対数の底とする。このとき、すべての自然数nについて\\
e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!} (x \geqq 0)\\
を証明せよ。\\
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に\\
外接するとは、正12角形のすべての辺が1つの円に接することである。\\
\\
(3)(1)と(2)を用いて、不等式\\
\pi - e \lt \frac{3}{5}\\
を証明せよ。ただし、\sqrt3 \gt 1.73は証明なしに用いてよい。
\end{eqnarray}
2022浜松医科大学医学部過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\hspace{220pt}\\
(1)eを自然対数の底とする。このとき、すべての自然数nについて\\
e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!} (x \geqq 0)\\
を証明せよ。\\
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に\\
外接するとは、正12角形のすべての辺が1つの円に接することである。\\
\\
(3)(1)と(2)を用いて、不等式\\
\pi - e \lt \frac{3}{5}\\
を証明せよ。ただし、\sqrt3 \gt 1.73は証明なしに用いてよい。
\end{eqnarray}
2022浜松医科大学医学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\hspace{220pt}\\
(1)eを自然対数の底とする。このとき、すべての自然数nについて\\
e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!} (x \geqq 0)\\
を証明せよ。\\
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に\\
外接するとは、正12角形のすべての辺が1つの円に接することである。\\
\\
(3)(1)と(2)を用いて、不等式\\
\pi - e \lt \frac{3}{5}\\
を証明せよ。ただし、\sqrt3 \gt 1.73は証明なしに用いてよい。
\end{eqnarray}
2022浜松医科大学医学部過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\hspace{220pt}\\
(1)eを自然対数の底とする。このとき、すべての自然数nについて\\
e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!} (x \geqq 0)\\
を証明せよ。\\
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に\\
外接するとは、正12角形のすべての辺が1つの円に接することである。\\
\\
(3)(1)と(2)を用いて、不等式\\
\pi - e \lt \frac{3}{5}\\
を証明せよ。ただし、\sqrt3 \gt 1.73は証明なしに用いてよい。
\end{eqnarray}
2022浜松医科大学医学部過去問
投稿日:2022.06.02