福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
投稿日:2023.03.11

<関連動画>

よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
この動画を見る 

0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#図形と方程式#点と直線#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.

ノートルダム女学院高校過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(2)アポロニウスの円、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$A(2,3),B(6,1)$がある。次の条件を満たす点$P,Q$の軌跡を求めよ。
(1)$2$点$A,B$からの距離が等しい点$P$
(2)$2$点$A,B$からの距離の比が$1:3$である点$Q$
この動画を見る 

福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 知って得する平行・垂直条件(1)
2直線
$ax-y-a+1=0 \ldots①$
$(a+2)x-ay+2a=0 \ldots②$
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
この動画を見る 

【数Ⅱ】【図形と方程式】2直線の関係2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$3x-2y+3=0,2x-4y+k=0,x-ky+5=0$が1点で交わるように、定数$k$の値を求めよ。

$x+3y=2,x+y=0,ax+2y=-4$が三角形を作らないような定数$a$の値を求めよ。

2直線$x-y+1=0,3x+2y-12=0$の交点を通り、次の条件を満たす直線の方程式を、それぞれ求めよ。
(1)直線$5xー6yー8=0$に平行である。
(2)直線$5xー6yー8=0$に垂直である。
この動画を見る 
PAGE TOP