大学入試問題#339「とりま部分積分じゃろ~~」 岡山県立大学(2013) #定積分 - 質問解決D.B.(データベース)

大学入試問題#339「とりま部分積分じゃろ~~」 岡山県立大学(2013) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{log(\cos\ x)}{\cos^2x} dx$

出典:2013年岡山県立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{log(\cos\ x)}{\cos^2x} dx$

出典:2013年岡山県立大学 入試問題
投稿日:2022.10.17

<関連動画>

大学入試問題#327 埼玉大学(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x}{9+16\sin^2x}dx$

出典:2010年埼玉大学 入試問題
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第3問〜定積分で表された方程式

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1) $x \gt 0$ のとき、関数 $\displaystyle y = \frac{e^x}{x}$ の極値を求めて、そのグラフの概形をかけ。
(2) 次の等式を満たす正の定数 $a$ を求めよ。
\begin{eqnarray}
\int_a^{2a} \frac{e^x}{x} dx = \int_a^{2a} \frac{e^x}{x^2} dx
\end{eqnarray}
(3) 次の等式を満たす異なる正の整数 $m,n$ が存在しないことを証明せよ。
\begin{eqnarray}
\int_m^{n} \frac{e^x}{x} dx = \int_m^{n} \frac{e^x}{x^2} dx
\end{eqnarray}
この動画を見る 

大学入試問題#529「教科書に載ってそう」 北見工業大学(2012) #微積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\cos\ x+\displaystyle \int_{0}^{x} e^{t-x}f(t)\ dt$のとき$f(x)$を求めよ

出典:2012年北見工業大学 入試問題
この動画を見る 

大学入試問題#82 神戸大学(2012) 複雑な置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x-\cos\ x}{1+\cos\ x}\ dx$

出典:2012年神戸大学 入試問題
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(4)〜定積分で表された関数と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)関数f(x)は微分可能であり、すべての実数xについて
$f(x)=e^{2x+1}+4\int_0^xf(t)dt$
を満たすとする。関数$g(x)$を$g(x)=e^{-4x}f(x)$により定めるとき,
$g'(x)=\boxed{シ}$であり、$f(x)=\boxed{ス}$である。また、曲線$y=f(x)$と
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる
回転体の体積は$\boxed{セ}$である。

2021北里大学医学部過去問
\end{eqnarray}
この動画を見る 
PAGE TOP