❗️ - 質問解決D.B.(データベース)

❗️

問題文全文(内容文):
4!=
3!=
2!=
1!=
0!=
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
4!=
3!=
2!=
1!=
0!=
投稿日:2022.03.30

<関連動画>

大阪大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
この動画を見る 

【数B】数列:隣接三項間型(重解) 次の条件によって定められる数列{an}の一般項を求めよ。a[1]=1,a[2]=5,a[n+2]+8a[n+1]+16a[n]=0

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
この動画を見る 

【数B】数列:漸化式の基本を解説シリーズその1 等差型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=a_n+1$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

福田のおもしろ数学127〜こんな漸化式解けるの?〜難しい漸化式の解き方

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1$=$\displaystyle\frac{1}{2}$, $a_{n+1}$=$\sqrt{\displaystyle\frac{a_n+1}{2}}$ を満たす数列$\left\{a_n\right\}$の一般項$a_n$を求めよ。
この動画を見る 

福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る 
PAGE TOP